#ifndef CUDA_HELPER_H #define CUDA_HELPER_H #include #include #ifdef __INTELLISENSE__ /* reduce vstudio warnings (__byteperm, blockIdx...) */ #include #include #define __launch_bounds__(max_tpb, min_blocks) #endif #include #ifndef MAX_GPUS #define MAX_GPUS 16 #endif extern "C" short device_map[MAX_GPUS]; extern "C" long device_sm[MAX_GPUS]; // common functions extern void cuda_check_cpu_init(int thr_id, int threads); extern void cuda_check_cpu_setTarget(const void *ptarget); extern uint32_t cuda_check_hash(int thr_id, int threads, uint32_t startNounce, uint32_t *d_inputHash); extern uint32_t cuda_check_hash_suppl(int thr_id, int threads, uint32_t startNounce, uint32_t *d_inputHash, uint8_t numNonce); extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); extern void cudaReportHardwareFailure(int thr_id, cudaError_t error, const char* func); extern __device__ __device_builtin__ void __syncthreads(void); extern __device__ __device_builtin__ void __threadfence(void); #ifndef __CUDA_ARCH__ // define blockDim and threadIdx for host extern const dim3 blockDim; extern const uint3 threadIdx; #endif #ifndef SPH_C32 #define SPH_C32(x) (x) // #define SPH_C32(x) ((uint32_t)(x ## U)) #endif #ifndef SPH_C64 #define SPH_C64(x) (x) // #define SPH_C64(x) ((uint64_t)(x ## ULL)) #endif #ifndef SPH_T32 #define SPH_T32(x) (x) // #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #endif #ifndef SPH_T64 #define SPH_T64(x) (x) // #define SPH_T64(x) ((x) & SPH_C64(0xFFFFFFFFFFFFFFFF)) #endif #if __CUDA_ARCH__ < 320 // Kepler (Compute 3.0) #define ROTL32(x, n) SPH_T32(((x) << (n)) | ((x) >> (32 - (n)))) #else // Kepler (Compute 3.5, 5.0) #define ROTL32(x, n) __funnelshift_l( (x), (x), (n) ) #endif __device__ __forceinline__ uint64_t MAKE_ULONGLONG(uint32_t LO, uint32_t HI) { #if __CUDA_ARCH__ >= 130 return __double_as_longlong(__hiloint2double(HI, LO)); #else return (uint64_t)LO | (((uint64_t)HI) << 32); #endif } // das Hi Word in einem 64 Bit Typen ersetzen __device__ __forceinline__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) { return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32U); } // das Lo Word in einem 64 Bit Typen ersetzen __device__ __forceinline__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) { return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y); } // Endian Drehung für 32 Bit Typen #ifdef __CUDA_ARCH__ __device__ __forceinline__ uint32_t cuda_swab32(uint32_t x) { /* device */ return __byte_perm(x, x, 0x0123); } #else /* host */ #define cuda_swab32(x) \ ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \ (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) #endif // das Lo Word aus einem 64 Bit Typen extrahieren __device__ __forceinline__ uint32_t _LOWORD(const uint64_t &x) { #if __CUDA_ARCH__ >= 130 return (uint32_t)__double2loint(__longlong_as_double(x)); #else return (uint32_t)(x & 0xFFFFFFFFULL); #endif } // das Hi Word aus einem 64 Bit Typen extrahieren __device__ __forceinline__ uint32_t _HIWORD(const uint64_t &x) { #if __CUDA_ARCH__ >= 130 return (uint32_t)__double2hiint(__longlong_as_double(x)); #else return (uint32_t)(x >> 32); #endif } #ifdef __CUDA_ARCH__ __device__ __forceinline__ uint64_t cuda_swab64(uint64_t x) { // Input: 77665544 33221100 // Output: 00112233 44556677 uint64_t result = __byte_perm((uint32_t) x, 0, 0x0123); return (result << 32) | __byte_perm(_HIWORD(x), 0, 0x0123); } #else /* host */ #define cuda_swab64(x) \ ((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \ (((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \ (((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \ (((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \ (((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \ (((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \ (((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \ (((uint64_t)(x) & 0x00000000000000ffULL) << 56))) #endif /*********************************************************************/ // Macros to catch CUDA errors in CUDA runtime calls #define CUDA_SAFE_CALL(call) \ do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ fprintf(stderr, "Cuda error in func '%s' at line %i : %s.\n", \ __FUNCTION__, __LINE__, cudaGetErrorString(err) ); \ exit(EXIT_FAILURE); \ } \ } while (0) #define CUDA_CALL_OR_RET(call) do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \ return; \ } \ } while (0) #define CUDA_CALL_OR_RET_X(call, ret) do { \ cudaError_t err = call; \ if (cudaSuccess != err) { \ cudaReportHardwareFailure(thr_id, err, __FUNCTION__); \ return ret; \ } \ } while (0) /*********************************************************************/ #ifdef _WIN64 #define USE_XOR_ASM_OPTS 0 #else #define USE_XOR_ASM_OPTS 1 #endif #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor1(uint64_t a, uint64_t b) { uint64_t result; asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(a), "l"(b)); return result; } #else #define xor1(a,b) (a ^ b) #endif #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor3(uint64_t a, uint64_t b, uint64_t c) { uint64_t result; asm("xor.b64 %0, %2, %3;\n\t" "xor.b64 %0, %0, %1;\n\t" /* output : input registers */ : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } #else #define xor3(a,b,c) (a ^ b ^ c) #endif #if USE_XOR_ASM_OPTS // device asm for whirpool __device__ __forceinline__ uint64_t xor8(uint64_t a, uint64_t b, uint64_t c, uint64_t d,uint64_t e,uint64_t f,uint64_t g, uint64_t h) { uint64_t result; asm("xor.b64 %0, %1, %2;" : "=l"(result) : "l"(g) ,"l"(h)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(f)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(e)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(d)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(c)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(b)); asm("xor.b64 %0, %0, %1;" : "+l"(result) : "l"(a)); return result; } #else #define xor8(a,b,c,d,e,f,g,h) ((a^b)^(c^d)^(e^f)^(g^h)) #endif // device asm for x17 __device__ __forceinline__ uint64_t xandx(uint64_t a, uint64_t b, uint64_t c) { uint64_t result; asm("{\n\t" ".reg .u64 n;\n\t" "xor.b64 %0, %2, %3;\n\t" "and.b64 n, %0, %1;\n\t" "xor.b64 %0, n, %3;" "}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } // device asm for x17 __device__ __forceinline__ uint64_t sph_t64(uint64_t x) { uint64_t result; asm("{\n\t" "and.b64 %0,%1,0xFFFFFFFFFFFFFFFF;\n\t" "}\n" : "=l"(result) : "l"(x)); return result; } // device asm for x17 __device__ __forceinline__ uint64_t andor(uint64_t a, uint64_t b, uint64_t c) { uint64_t result; asm("{\n\t" ".reg .u64 m,n;\n\t" "and.b64 m, %1, %2;\n\t" " or.b64 n, %1, %2;\n\t" "and.b64 %0, n, %3;\n\t" " or.b64 %0, %0, m ;\n\t" "}\n" : "=l"(result) : "l"(a), "l"(b), "l"(c)); return result; } // device asm for x17 __device__ __forceinline__ uint64_t shr_t64(uint64_t x, uint32_t n) { uint64_t result; asm("shr.b64 %0,%1,%2;\n\t" "and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */ : "=l"(result) : "l"(x), "r"(n)); return result; } // device asm for ? __device__ __forceinline__ uint64_t shl_t64(uint64_t x, uint32_t n) { uint64_t result; asm("shl.b64 %0,%1,%2;\n\t" "and.b64 %0,%0,0xFFFFFFFFFFFFFFFF;\n\t" /* useful ? */ : "=l"(result) : "l"(x), "r"(n)); return result; } #ifndef USE_ROT_ASM_OPT #define USE_ROT_ASM_OPT 1 #endif // 64-bit ROTATE RIGHT #if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1 /* complicated sm >= 3.5 one (with Funnel Shifter beschleunigt), to bench */ __device__ __forceinline__ uint64_t ROTR64(const uint64_t value, const int offset) { uint2 result; if(offset < 32) { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2 __device__ __forceinline__ uint64_t ROTR64(const uint64_t x, const int offset) { uint64_t result; asm("{\n\t" ".reg .b64 lhs;\n\t" ".reg .u32 roff;\n\t" "shr.b64 lhs, %1, %2;\n\t" "sub.u32 roff, 64, %2;\n\t" "shl.b64 %0, %1, roff;\n\t" "add.u64 %0, %0, lhs;\n\t" "}\n" : "=l"(result) : "l"(x), "r"(offset)); return result; } #else /* host */ #define ROTR64(x, n) (((x) >> (n)) | ((x) << (64 - (n)))) #endif // 64-bit ROTATE LEFT #if __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 1 __device__ __forceinline__ uint64_t ROTL64(const uint64_t value, const int offset) { uint2 result; if(offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #elif __CUDA_ARCH__ >= 120 && USE_ROT_ASM_OPT == 2 __device__ __forceinline__ uint64_t ROTL64(const uint64_t x, const int offset) { uint64_t result; asm("{\n\t" ".reg .b64 lhs;\n\t" ".reg .u32 roff;\n\t" "shl.b64 lhs, %1, %2;\n\t" "sub.u32 roff, 64, %2;\n\t" "shr.b64 %0, %1, roff;\n\t" "add.u64 %0, lhs, %0;\n\t" "}\n" : "=l"(result) : "l"(x), "r"(offset)); return result; } #elif __CUDA_ARCH__ >= 320 && USE_ROT_ASM_OPT == 3 __device__ uint64_t ROTL64(const uint64_t x, const int offset) { uint64_t res; asm("{\n\t" ".reg .u32 tl,th,vl,vh;\n\t" ".reg .pred p;\n\t" "mov.b64 {tl,th}, %1;\n\t" "shf.l.wrap.b32 vl, tl, th, %2;\n\t" "shf.l.wrap.b32 vh, th, tl, %2;\n\t" "setp.lt.u32 p, %2, 32;\n\t" "@!p mov.b64 %0, {vl,vh};\n\t" "@p mov.b64 %0, {vh,vl};\n\t" "}" : "=l"(res) : "l"(x) , "r"(offset) ); return res; } #else /* host */ #define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) #endif __device__ __forceinline__ uint64_t SWAPDWORDS(uint64_t value) { #if __CUDA_ARCH__ >= 320 uint2 temp; asm("mov.b64 {%0, %1}, %2; ": "=r"(temp.x), "=r"(temp.y) : "l"(value)); asm("mov.b64 %0, {%1, %2}; ": "=l"(value) : "r"(temp.y), "r"(temp.x)); return value; #else return ROTL64(value, 32); #endif } /* lyra2 - int2 operators */ __device__ __forceinline__ void LOHI(uint32_t &lo, uint32_t &hi, uint64_t x) { asm("mov.b64 {%0,%1},%2; \n\t" : "=r"(lo), "=r"(hi) : "l"(x)); } static __device__ __forceinline__ uint64_t devectorize(uint2 v) { return MAKE_ULONGLONG(v.x, v.y); } static __device__ __forceinline__ uint2 vectorize(uint64_t v) { uint2 result; LOHI(result.x, result.y, v); return result; } static __device__ __forceinline__ uint2 operator^ (uint2 a, uint2 b) { return make_uint2(a.x ^ b.x, a.y ^ b.y); } static __device__ __forceinline__ uint2 operator& (uint2 a, uint2 b) { return make_uint2(a.x & b.x, a.y & b.y); } static __device__ __forceinline__ uint2 operator| (uint2 a, uint2 b) { return make_uint2(a.x | b.x, a.y | b.y); } static __device__ __forceinline__ uint2 operator~ (uint2 a) { return make_uint2(~a.x, ~a.y); } static __device__ __forceinline__ void operator^= (uint2 &a, uint2 b) { a = a ^ b; } static __device__ __forceinline__ uint2 operator+ (uint2 a, uint2 b) { uint2 result; asm("{\n\t" "add.cc.u32 %0,%2,%4; \n\t" "addc.u32 %1,%3,%5; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y)); return result; } static __device__ __forceinline__ void operator+= (uint2 &a, uint2 b) { a = a + b; } /** * basic multiplication between 64bit no carry outside that range (ie mul.lo.b64(a*b)) * (what does uint64 "*" operator) */ static __device__ __forceinline__ uint2 operator* (uint2 a, uint2 b) { uint2 result; asm("{\n\t" "mul.lo.u32 %0,%2,%4; \n\t" "mul.hi.u32 %1,%2,%4; \n\t" "mad.lo.cc.u32 %1,%3,%4,%1; \n\t" "madc.lo.u32 %1,%3,%5,%1; \n\t" "}\n\t" : "=r"(result.x), "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(b.x), "r"(b.y)); return result; } // uint2 ROR/ROL methods __device__ __forceinline__ uint2 ROR2(const uint2 a, const int offset) { uint2 result; #if __CUDA_ARCH__ > 300 if (offset < 32) { asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else /* if (offset < 64) */ { /* offset SHOULD BE < 64 ! */ asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } #else if (!offset) result = a; else if (offset < 32) { result.y = ((a.y >> offset) | (a.x << (32 - offset))); result.x = ((a.x >> offset) | (a.y << (32 - offset))); } else if (offset == 32) { result.y = a.x; result.x = a.y; } else { result.y = ((a.x >> (offset - 32)) | (a.y << (64 - offset))); result.x = ((a.y >> (offset - 32)) | (a.x << (64 - offset))); } #endif return result; } __device__ __forceinline__ uint2 ROL2(const uint2 a, const int offset) { uint2 result; #if __CUDA_ARCH__ > 300 if (offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.x), "r"(a.y), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.y), "r"(a.x), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(a.y), "r"(a.x), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(a.x), "r"(a.y), "r"(offset)); } #else if (!offset) result = a; else result = ROR2(a, 64 - offset); #endif return result; } __device__ __forceinline__ uint2 SWAPUINT2(uint2 value) { return make_uint2(value.y, value.x); } #endif // #ifndef CUDA_HELPER_H