/**
 * A simple implementation of Blake2b's internal permutation
 * in the form of a sponge.
 *
 * Author: The Lyra PHC team (http://www.lyra-kdf.net/) -- 2014.
 *
 * This software is hereby placed in the public domain.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
 * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#include <string.h>
#include <stdio.h>
#include <time.h>
#include "Sponge.h"
#include "Lyra2.h"


/**
 * Initializes the Sponge State. The first 512 bits are set to zeros and the remainder
 * receive Blake2b's IV as per Blake2b's specification. <b>Note:</b> Even though sponges
 * typically have their internal state initialized with zeros, Blake2b's G function
 * has a fixed point: if the internal state and message are both filled with zeros. the
 * resulting permutation will always be a block filled with zeros; this happens because
 * Blake2b does not use the constants originally employed in Blake2 inside its G function,
 * relying on the IV for avoiding possible fixed points.
 *
 * @param state         The 1024-bit array to be initialized
 */
void initState(uint64_t state[/*16*/]) {
	//First 512 bis are zeros
	memset(state, 0, 64);
	//Remainder BLOCK_LEN_BLAKE2_SAFE_BYTES are reserved to the IV
	state[8] = blake2b_IV[0];
	state[9] = blake2b_IV[1];
	state[10] = blake2b_IV[2];
	state[11] = blake2b_IV[3];
	state[12] = blake2b_IV[4];
	state[13] = blake2b_IV[5];
	state[14] = blake2b_IV[6];
	state[15] = blake2b_IV[7];
}

/**
 * Execute Blake2b's G function, with all 12 rounds.
 *
 * @param v     A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
 */
__inline static void blake2bLyra(uint64_t *v) {
	ROUND_LYRA(0);
	ROUND_LYRA(1);
	ROUND_LYRA(2);
	ROUND_LYRA(3);
	ROUND_LYRA(4);
	ROUND_LYRA(5);
	ROUND_LYRA(6);
	ROUND_LYRA(7);
	ROUND_LYRA(8);
	ROUND_LYRA(9);
	ROUND_LYRA(10);
	ROUND_LYRA(11);
}

/**
 * Executes a reduced version of Blake2b's G function with only one round
 * @param v     A 1024-bit (16 uint64_t) array to be processed by Blake2b's G function
 */
__inline static void reducedBlake2bLyra(uint64_t *v) {
	ROUND_LYRA(0);
}

/**
 * Performs a squeeze operation, using Blake2b's G function as the
 * internal permutation
 *
 * @param state      The current state of the sponge
 * @param out        Array that will receive the data squeezed
 * @param len        The number of bytes to be squeezed into the "out" array
 */
void squeeze(uint64_t *state, byte *out, unsigned int len)
{
	int fullBlocks = len / BLOCK_LEN_BYTES;
	byte *ptr = out;
	int i;
	//Squeezes full blocks
	for (i = 0; i < fullBlocks; i++) {
		memcpy(ptr, state, BLOCK_LEN_BYTES);
		blake2bLyra(state);
		ptr += BLOCK_LEN_BYTES;
	}

	//Squeezes remaining bytes
	memcpy(ptr, state, (len % BLOCK_LEN_BYTES));
}

/**
 * Performs an absorb operation for a single block (BLOCK_LEN_INT64 words
 * of type uint64_t), using Blake2b's G function as the internal permutation
 *
 * @param state The current state of the sponge
 * @param in    The block to be absorbed (BLOCK_LEN_INT64 words)
 */
void absorbBlock(uint64_t *state, const uint64_t *in)
{
	//XORs the first BLOCK_LEN_INT64 words of "in" with the current state
	state[0] ^= in[0];
	state[1] ^= in[1];
	state[2] ^= in[2];
	state[3] ^= in[3];
	state[4] ^= in[4];
	state[5] ^= in[5];
	state[6] ^= in[6];
	state[7] ^= in[7];
	state[8] ^= in[8];
	state[9] ^= in[9];
	state[10] ^= in[10];
	state[11] ^= in[11];

	//Applies the transformation f to the sponge's state
	blake2bLyra(state);
}

/**
 * Performs an absorb operation for a single block (BLOCK_LEN_BLAKE2_SAFE_INT64
 * words of type uint64_t), using Blake2b's G function as the internal permutation
 *
 * @param state The current state of the sponge
 * @param in    The block to be absorbed (BLOCK_LEN_BLAKE2_SAFE_INT64 words)
 */
void absorbBlockBlake2Safe(uint64_t *state, const uint64_t *in)
{
	//XORs the first BLOCK_LEN_BLAKE2_SAFE_INT64 words of "in" with the current state

	state[0] ^= in[0];
	state[1] ^= in[1];
	state[2] ^= in[2];
	state[3] ^= in[3];
	state[4] ^= in[4];
	state[5] ^= in[5];
	state[6] ^= in[6];
	state[7] ^= in[7];

	//Applies the transformation f to the sponge's state
	blake2bLyra(state);
}

/**
 * Performs a reduced squeeze operation for a single row, from the highest to
 * the lowest index, using the reduced-round Blake2b's G function as the
 * internal permutation
 *
 * @param state     The current state of the sponge
 * @param rowOut    Row to receive the data squeezed
 */
void reducedSqueezeRow0(uint64_t* state, uint64_t* rowOut, const uint32_t nCols)
{
	uint64_t* ptrWord = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to M[0][C-1]
	unsigned int i;
	//M[row][C-1-col] = H.reduced_squeeze()
	for (i = 0; i < nCols; i++) {
		ptrWord[0] = state[0];
		ptrWord[1] = state[1];
		ptrWord[2] = state[2];
		ptrWord[3] = state[3];
		ptrWord[4] = state[4];
		ptrWord[5] = state[5];
		ptrWord[6] = state[6];
		ptrWord[7] = state[7];
		ptrWord[8] = state[8];
		ptrWord[9] = state[9];
		ptrWord[10] = state[10];
		ptrWord[11] = state[11];

		//Goes to next block (column) that will receive the squeezed data
		ptrWord -= BLOCK_LEN_INT64;

		//Applies the reduced-round transformation f to the sponge's state
		reducedBlake2bLyra(state);
	}
}

/**
 * Performs a reduced duplex operation for a single row, from the highest to
 * the lowest index, using the reduced-round Blake2b's G function as the
 * internal permutation
 *
 * @param state		The current state of the sponge
 * @param rowIn		Row to feed the sponge
 * @param rowOut	Row to receive the sponge's output
 */
void reducedDuplexRow1(uint64_t *state, uint64_t *rowIn, uint64_t *rowOut, const uint32_t nCols)
{
	uint64_t* ptrWordIn = rowIn;				//In Lyra2: pointer to prev
	uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
	unsigned int i;

	for (i = 0; i < nCols; i++) {

		//Absorbing "M[prev][col]"
		state[0]  ^= (ptrWordIn[0]);
		state[1]  ^= (ptrWordIn[1]);
		state[2]  ^= (ptrWordIn[2]);
		state[3]  ^= (ptrWordIn[3]);
		state[4]  ^= (ptrWordIn[4]);
		state[5]  ^= (ptrWordIn[5]);
		state[6]  ^= (ptrWordIn[6]);
		state[7]  ^= (ptrWordIn[7]);
		state[8]  ^= (ptrWordIn[8]);
		state[9]  ^= (ptrWordIn[9]);
		state[10] ^= (ptrWordIn[10]);
		state[11] ^= (ptrWordIn[11]);

		//Applies the reduced-round transformation f to the sponge's state
		reducedBlake2bLyra(state);

		//M[row][C-1-col] = M[prev][col] XOR rand
		ptrWordOut[0] = ptrWordIn[0]  ^ state[0];
		ptrWordOut[1] = ptrWordIn[1]  ^ state[1];
		ptrWordOut[2] = ptrWordIn[2]  ^ state[2];
		ptrWordOut[3] = ptrWordIn[3]  ^ state[3];
		ptrWordOut[4] = ptrWordIn[4]  ^ state[4];
		ptrWordOut[5] = ptrWordIn[5]  ^ state[5];
		ptrWordOut[6] = ptrWordIn[6]  ^ state[6];
		ptrWordOut[7] = ptrWordIn[7]  ^ state[7];
		ptrWordOut[8] = ptrWordIn[8]  ^ state[8];
		ptrWordOut[9] = ptrWordIn[9]  ^ state[9];
		ptrWordOut[10] = ptrWordIn[10] ^ state[10];
		ptrWordOut[11] = ptrWordIn[11] ^ state[11];

		//Input: next column (i.e., next block in sequence)
		ptrWordIn += BLOCK_LEN_INT64;
		//Output: goes to previous column
		ptrWordOut -= BLOCK_LEN_INT64;
	}
}

/**
 * Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
 * the wordwise addition of two columns, ignoring carries between words). The
 * output of this operation, "rand", is then used to make
 * "M[rowOut][(N_COLS-1)-col] = M[rowIn][col] XOR rand" and
 * "M[rowInOut][col] =  M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
 * rotation to the left and N_COLS is a system parameter.
 *
 * @param state          The current state of the sponge
 * @param rowIn          Row used only as input
 * @param rowInOut       Row used as input and to receive output after rotation
 * @param rowOut         Row receiving the output
 *
 */
void reducedDuplexRowSetup(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
	uint64_t* ptrWordIn = rowIn;				//In Lyra2: pointer to prev
	uint64_t* ptrWordInOut = rowInOut;				//In Lyra2: pointer to row*
	uint64_t* ptrWordOut = rowOut + (nCols-1)*BLOCK_LEN_INT64; //In Lyra2: pointer to row
	unsigned int i;

	for (i = 0; i < nCols; i++) {

		//Absorbing "M[prev] [+] M[row*]"
		state[0]  ^= (ptrWordIn[0]  + ptrWordInOut[0]);
		state[1]  ^= (ptrWordIn[1]  + ptrWordInOut[1]);
		state[2]  ^= (ptrWordIn[2]  + ptrWordInOut[2]);
		state[3]  ^= (ptrWordIn[3]  + ptrWordInOut[3]);
		state[4]  ^= (ptrWordIn[4]  + ptrWordInOut[4]);
		state[5]  ^= (ptrWordIn[5]  + ptrWordInOut[5]);
		state[6]  ^= (ptrWordIn[6]  + ptrWordInOut[6]);
		state[7]  ^= (ptrWordIn[7]  + ptrWordInOut[7]);
		state[8]  ^= (ptrWordIn[8]  + ptrWordInOut[8]);
		state[9]  ^= (ptrWordIn[9]  + ptrWordInOut[9]);
		state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
		state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);

		//Applies the reduced-round transformation f to the sponge's state
		reducedBlake2bLyra(state);

		//M[row][col] = M[prev][col] XOR rand
		ptrWordOut[0] = ptrWordIn[0]  ^ state[0];
		ptrWordOut[1] = ptrWordIn[1]  ^ state[1];
		ptrWordOut[2] = ptrWordIn[2]  ^ state[2];
		ptrWordOut[3] = ptrWordIn[3]  ^ state[3];
		ptrWordOut[4] = ptrWordIn[4]  ^ state[4];
		ptrWordOut[5] = ptrWordIn[5]  ^ state[5];
		ptrWordOut[6] = ptrWordIn[6]  ^ state[6];
		ptrWordOut[7] = ptrWordIn[7]  ^ state[7];
		ptrWordOut[8] = ptrWordIn[8]  ^ state[8];
		ptrWordOut[9] = ptrWordIn[9]  ^ state[9];
		ptrWordOut[10] = ptrWordIn[10] ^ state[10];
		ptrWordOut[11] = ptrWordIn[11] ^ state[11];

		//M[row*][col] = M[row*][col] XOR rotW(rand)
		ptrWordInOut[0]  ^= state[11];
		ptrWordInOut[1]  ^= state[0];
		ptrWordInOut[2]  ^= state[1];
		ptrWordInOut[3]  ^= state[2];
		ptrWordInOut[4]  ^= state[3];
		ptrWordInOut[5]  ^= state[4];
		ptrWordInOut[6]  ^= state[5];
		ptrWordInOut[7]  ^= state[6];
		ptrWordInOut[8]  ^= state[7];
		ptrWordInOut[9]  ^= state[8];
		ptrWordInOut[10] ^= state[9];
		ptrWordInOut[11] ^= state[10];

		//Inputs: next column (i.e., next block in sequence)
		ptrWordInOut += BLOCK_LEN_INT64;
		ptrWordIn += BLOCK_LEN_INT64;
		//Output: goes to previous column
		ptrWordOut -= BLOCK_LEN_INT64;
	}
}

/**
 * Performs a duplexing operation over "M[rowInOut][col] [+] M[rowIn][col]" (i.e.,
 * the wordwise addition of two columns, ignoring carries between words). The
 * output of this operation, "rand", is then used to make
 * "M[rowOut][col] = M[rowOut][col] XOR rand" and
 * "M[rowInOut][col] =  M[rowInOut][col] XOR rotW(rand)", where rotW is a 64-bit
 * rotation to the left.
 *
 * @param state          The current state of the sponge
 * @param rowIn          Row used only as input
 * @param rowInOut       Row used as input and to receive output after rotation
 * @param rowOut         Row receiving the output
 *
 */
void reducedDuplexRow(uint64_t *state, uint64_t *rowIn, uint64_t *rowInOut, uint64_t *rowOut, const uint32_t nCols)
{
	uint64_t* ptrWordInOut = rowInOut; //In Lyra2: pointer to row*
	uint64_t* ptrWordIn = rowIn; //In Lyra2: pointer to prev
	uint64_t* ptrWordOut = rowOut; //In Lyra2: pointer to row
	unsigned int i;

	for (i = 0; i < nCols; i++) {

		//Absorbing "M[prev] [+] M[row*]"
		state[0]  ^= (ptrWordIn[0]  + ptrWordInOut[0]);
		state[1]  ^= (ptrWordIn[1]  + ptrWordInOut[1]);
		state[2]  ^= (ptrWordIn[2]  + ptrWordInOut[2]);
		state[3]  ^= (ptrWordIn[3]  + ptrWordInOut[3]);
		state[4]  ^= (ptrWordIn[4]  + ptrWordInOut[4]);
		state[5]  ^= (ptrWordIn[5]  + ptrWordInOut[5]);
		state[6]  ^= (ptrWordIn[6]  + ptrWordInOut[6]);
		state[7]  ^= (ptrWordIn[7]  + ptrWordInOut[7]);
		state[8]  ^= (ptrWordIn[8]  + ptrWordInOut[8]);
		state[9]  ^= (ptrWordIn[9]  + ptrWordInOut[9]);
		state[10] ^= (ptrWordIn[10] + ptrWordInOut[10]);
		state[11] ^= (ptrWordIn[11] + ptrWordInOut[11]);

		//Applies the reduced-round transformation f to the sponge's state
		reducedBlake2bLyra(state);

		//M[rowOut][col] = M[rowOut][col] XOR rand
		ptrWordOut[0] ^= state[0];
		ptrWordOut[1] ^= state[1];
		ptrWordOut[2] ^= state[2];
		ptrWordOut[3] ^= state[3];
		ptrWordOut[4] ^= state[4];
		ptrWordOut[5] ^= state[5];
		ptrWordOut[6] ^= state[6];
		ptrWordOut[7] ^= state[7];
		ptrWordOut[8] ^= state[8];
		ptrWordOut[9] ^= state[9];
		ptrWordOut[10] ^= state[10];
		ptrWordOut[11] ^= state[11];

		//M[rowInOut][col] = M[rowInOut][col] XOR rotW(rand)
		ptrWordInOut[0] ^= state[11];
		ptrWordInOut[1] ^= state[0];
		ptrWordInOut[2] ^= state[1];
		ptrWordInOut[3] ^= state[2];
		ptrWordInOut[4] ^= state[3];
		ptrWordInOut[5] ^= state[4];
		ptrWordInOut[6] ^= state[5];
		ptrWordInOut[7] ^= state[6];
		ptrWordInOut[8] ^= state[7];
		ptrWordInOut[9] ^= state[8];
		ptrWordInOut[10] ^= state[9];
		ptrWordInOut[11] ^= state[10];

		//Goes to next block
		ptrWordOut += BLOCK_LEN_INT64;
		ptrWordInOut += BLOCK_LEN_INT64;
		ptrWordIn += BLOCK_LEN_INT64;
	}
}

/**
 * Prints an array of unsigned chars
 */
void printArray(unsigned char *array, unsigned int size, char *name)
{
	unsigned int i;
	printf("%s: ", name);
	for (i = 0; i < size; i++) {
		printf("%2x|", array[i]);
	}
	printf("\n");
}

////////////////////////////////////////////////////////////////////////////////////////////////