#include #include #include "sph/sph_types.h" #include "cuda_helper.h" extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); //#define SPH_C64(x) ((uint64_t)(x ## ULL)) //#define SPH_C32(x) ((uint32_t)(x ## U)) #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #define ROTR SPH_ROTR32 #define host_swab32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) __constant__ uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding) __constant__ uint32_t pTarget[8]; __constant__ uint32_t pbuf[8]; uint32_t *d_mnounce[8]; uint32_t *d_MNonce[8]; static __constant__ uint32_t H256[8]; static __constant__ uint32_t K[64]; __constant__ uint32_t sha256_gpu_blockHeader[16]; // 2x512 Bit Message __constant__ uint32_t sha256_gpu_register[8]; static const uint32_t cpu_H256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; static const uint32_t cpu_K[64] = { SPH_C32(0x428A2F98), SPH_C32(0x71374491), SPH_C32(0xB5C0FBCF), SPH_C32(0xE9B5DBA5), SPH_C32(0x3956C25B), SPH_C32(0x59F111F1), SPH_C32(0x923F82A4), SPH_C32(0xAB1C5ED5), SPH_C32(0xD807AA98), SPH_C32(0x12835B01), SPH_C32(0x243185BE), SPH_C32(0x550C7DC3), SPH_C32(0x72BE5D74), SPH_C32(0x80DEB1FE), SPH_C32(0x9BDC06A7), SPH_C32(0xC19BF174), SPH_C32(0xE49B69C1), SPH_C32(0xEFBE4786), SPH_C32(0x0FC19DC6), SPH_C32(0x240CA1CC), SPH_C32(0x2DE92C6F), SPH_C32(0x4A7484AA), SPH_C32(0x5CB0A9DC), SPH_C32(0x76F988DA), SPH_C32(0x983E5152), SPH_C32(0xA831C66D), SPH_C32(0xB00327C8), SPH_C32(0xBF597FC7), SPH_C32(0xC6E00BF3), SPH_C32(0xD5A79147), SPH_C32(0x06CA6351), SPH_C32(0x14292967), SPH_C32(0x27B70A85), SPH_C32(0x2E1B2138), SPH_C32(0x4D2C6DFC), SPH_C32(0x53380D13), SPH_C32(0x650A7354), SPH_C32(0x766A0ABB), SPH_C32(0x81C2C92E), SPH_C32(0x92722C85), SPH_C32(0xA2BFE8A1), SPH_C32(0xA81A664B), SPH_C32(0xC24B8B70), SPH_C32(0xC76C51A3), SPH_C32(0xD192E819), SPH_C32(0xD6990624), SPH_C32(0xF40E3585), SPH_C32(0x106AA070), SPH_C32(0x19A4C116), SPH_C32(0x1E376C08), SPH_C32(0x2748774C), SPH_C32(0x34B0BCB5), SPH_C32(0x391C0CB3), SPH_C32(0x4ED8AA4A), SPH_C32(0x5B9CCA4F), SPH_C32(0x682E6FF3), SPH_C32(0x748F82EE), SPH_C32(0x78A5636F), SPH_C32(0x84C87814), SPH_C32(0x8CC70208), SPH_C32(0x90BEFFFA), SPH_C32(0xA4506CEB), SPH_C32(0xBEF9A3F7), SPH_C32(0xC67178F2) }; __device__ __forceinline__ static uint32_t bsg2_0(uint32_t x) { uint32_t r1 = SPH_ROTR32(x,2); uint32_t r2 = SPH_ROTR32(x,13); uint32_t r3 = SPH_ROTR32(x,22); return xor3b(r1,r2,r3); } __device__ __forceinline__ static uint32_t bsg2_1(uint32_t x) { uint32_t r1 = SPH_ROTR32(x,6); uint32_t r2 = SPH_ROTR32(x,11); uint32_t r3 = SPH_ROTR32(x,25); return xor3b(r1,r2,r3); } __device__ __forceinline__ static uint32_t ssg2_0(uint32_t x) { uint64_t r1 = SPH_ROTR32(x,7); uint64_t r2 = SPH_ROTR32(x,18); uint64_t r3 = shr_t32(x,3); return xor3b(r1,r2,r3); } __device__ __forceinline__ static uint32_t ssg2_1(uint32_t x) { uint64_t r1 = SPH_ROTR32(x,17); uint64_t r2 = SPH_ROTR32(x,19); uint64_t r3 = shr_t32(x,10); return xor3b(r1,r2,r3); } __device__ __forceinline__ static void sha2_step1(uint32_t a,uint32_t b,uint32_t c,uint32_t &d,uint32_t e,uint32_t f,uint32_t g,uint32_t &h, uint32_t in,const uint32_t Kshared) { uint32_t t1,t2; uint32_t vxandx = xandx(e, f, g); uint32_t bsg21 =bsg2_1(e); uint32_t bsg20 =bsg2_0(a); uint32_t andorv =andor32(a,b,c); t1 = h + bsg21 + vxandx + Kshared + in; t2 = bsg20 + andorv; d = d + t1; h = t1 + t2; } __host__ __forceinline__ static void sha2_step1_host(uint32_t a,uint32_t b,uint32_t c,uint32_t &d,uint32_t e,uint32_t f,uint32_t g,uint32_t &h, uint32_t in,const uint32_t Kshared) { uint32_t t1,t2; uint32_t vxandx = (((f) ^ (g)) & (e)) ^ (g); // xandx(e, f, g); uint32_t bsg21 =ROTR(e, 6) ^ ROTR(e, 11) ^ ROTR(e, 25); // bsg2_1(e); uint32_t bsg20 =ROTR(a, 2) ^ ROTR(a, 13) ^ ROTR(a, 22); //bsg2_0(a); uint32_t andorv =((b) & (c)) | (((b) | (c)) & (a)); //andor32(a,b,c); t1 = h + bsg21 + vxandx + Kshared + in; t2 = bsg20 + andorv; d = d + t1; h = t1 + t2; } __device__ __forceinline__ static void sha2_step2(uint32_t a,uint32_t b,uint32_t c,uint32_t &d,uint32_t e,uint32_t f,uint32_t g,uint32_t &h, uint32_t* in,uint32_t pc,const uint32_t Kshared) { uint32_t t1,t2; int pcidx1 = (pc-2) & 0xF; int pcidx2 = (pc-7) & 0xF; int pcidx3 = (pc-15) & 0xF; uint32_t inx0 = in[pc]; uint32_t inx1 = in[pcidx1]; uint32_t inx2 = in[pcidx2]; uint32_t inx3 = in[pcidx3]; uint32_t ssg21 = ssg2_1(inx1); uint32_t ssg20 = ssg2_0(inx3); uint32_t vxandx = xandx(e, f, g); uint32_t bsg21 =bsg2_1(e); uint32_t bsg20 =bsg2_0(a); uint32_t andorv =andor32(a,b,c); in[pc] = ssg21+inx2+ssg20+inx0; t1 = h + bsg21 + vxandx + Kshared + in[pc]; t2 = bsg20 + andorv; d = d + t1; h = t1 + t2; } __host__ __forceinline__ static void sha2_step2_host(uint32_t a,uint32_t b,uint32_t c,uint32_t &d,uint32_t e,uint32_t f,uint32_t g,uint32_t &h, uint32_t* in,uint32_t pc,const uint32_t Kshared) { uint32_t t1,t2; int pcidx1 = (pc-2) & 0xF; int pcidx2 = (pc-7) & 0xF; int pcidx3 = (pc-15) & 0xF; uint32_t inx0 = in[pc]; uint32_t inx1 = in[pcidx1]; uint32_t inx2 = in[pcidx2]; uint32_t inx3 = in[pcidx3]; uint32_t ssg21 = ROTR(inx1, 17) ^ ROTR(inx1, 19) ^ SPH_T32((inx1) >> 10); //ssg2_1(inx1); uint32_t ssg20 = ROTR(inx3, 7) ^ ROTR(inx3, 18) ^ SPH_T32((inx3) >> 3); //ssg2_0(inx3); uint32_t vxandx = (((f) ^ (g)) & (e)) ^ (g); // xandx(e, f, g); uint32_t bsg21 =ROTR(e, 6) ^ ROTR(e, 11) ^ ROTR(e, 25); // bsg2_1(e); uint32_t bsg20 =ROTR(a, 2) ^ ROTR(a, 13) ^ ROTR(a, 22); //bsg2_0(a); uint32_t andorv =((b) & (c)) | (((b) | (c)) & (a)); //andor32(a,b,c); in[pc] = ssg21+inx2+ssg20+inx0; t1 = h + bsg21 + vxandx + Kshared + in[pc]; t2 = bsg20 + andorv; d = d + t1; h = t1 + t2; } __device__ __forceinline__ static void sha2_round_body(uint32_t* in, uint32_t* r,const uint32_t* Kshared) { uint32_t a=r[0]; uint32_t b=r[1]; uint32_t c=r[2]; uint32_t d=r[3]; uint32_t e=r[4]; uint32_t f=r[5]; uint32_t g=r[6]; uint32_t h=r[7]; sha2_step1(a,b,c,d,e,f,g,h,in[0],Kshared[0]); sha2_step1(h,a,b,c,d,e,f,g,in[1],Kshared[1]); sha2_step1(g,h,a,b,c,d,e,f,in[2],Kshared[2]); sha2_step1(f,g,h,a,b,c,d,e,in[3],Kshared[3]); sha2_step1(e,f,g,h,a,b,c,d,in[4],Kshared[4]); sha2_step1(d,e,f,g,h,a,b,c,in[5],Kshared[5]); sha2_step1(c,d,e,f,g,h,a,b,in[6],Kshared[6]); sha2_step1(b,c,d,e,f,g,h,a,in[7],Kshared[7]); sha2_step1(a,b,c,d,e,f,g,h,in[8],Kshared[8]); sha2_step1(h,a,b,c,d,e,f,g,in[9],Kshared[9]); sha2_step1(g,h,a,b,c,d,e,f,in[10],Kshared[10]); sha2_step1(f,g,h,a,b,c,d,e,in[11],Kshared[11]); sha2_step1(e,f,g,h,a,b,c,d,in[12],Kshared[12]); sha2_step1(d,e,f,g,h,a,b,c,in[13],Kshared[13]); sha2_step1(c,d,e,f,g,h,a,b,in[14],Kshared[14]); sha2_step1(b,c,d,e,f,g,h,a,in[15],Kshared[15]); #pragma unroll 3 for (int i=0;i<3;i++) { sha2_step2(a,b,c,d,e,f,g,h,in,0,Kshared[16+16*i]); sha2_step2(h,a,b,c,d,e,f,g,in,1,Kshared[17+16*i]); sha2_step2(g,h,a,b,c,d,e,f,in,2,Kshared[18+16*i]); sha2_step2(f,g,h,a,b,c,d,e,in,3,Kshared[19+16*i]); sha2_step2(e,f,g,h,a,b,c,d,in,4,Kshared[20+16*i]); sha2_step2(d,e,f,g,h,a,b,c,in,5,Kshared[21+16*i]); sha2_step2(c,d,e,f,g,h,a,b,in,6,Kshared[22+16*i]); sha2_step2(b,c,d,e,f,g,h,a,in,7,Kshared[23+16*i]); sha2_step2(a,b,c,d,e,f,g,h,in,8,Kshared[24+16*i]); sha2_step2(h,a,b,c,d,e,f,g,in,9,Kshared[25+16*i]); sha2_step2(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]); sha2_step2(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]); sha2_step2(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]); sha2_step2(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]); sha2_step2(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]); sha2_step2(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]); } r[0] = r[0] + a; r[1] = r[1] + b; r[2] = r[2] + c; r[3] = r[3] + d; r[4] = r[4] + e; r[5] = r[5] + f; r[6] = r[6] + g; r[7] = r[7] + h; } __forceinline__ static void sha2_round_body_host(uint32_t* in, uint32_t* r,const uint32_t* Kshared) { uint32_t a=r[0]; uint32_t b=r[1]; uint32_t c=r[2]; uint32_t d=r[3]; uint32_t e=r[4]; uint32_t f=r[5]; uint32_t g=r[6]; uint32_t h=r[7]; sha2_step1_host(a,b,c,d,e,f,g,h,in[0],Kshared[0]); sha2_step1_host(h,a,b,c,d,e,f,g,in[1],Kshared[1]); sha2_step1_host(g,h,a,b,c,d,e,f,in[2],Kshared[2]); sha2_step1_host(f,g,h,a,b,c,d,e,in[3],Kshared[3]); sha2_step1_host(e,f,g,h,a,b,c,d,in[4],Kshared[4]); sha2_step1_host(d,e,f,g,h,a,b,c,in[5],Kshared[5]); sha2_step1_host(c,d,e,f,g,h,a,b,in[6],Kshared[6]); sha2_step1_host(b,c,d,e,f,g,h,a,in[7],Kshared[7]); sha2_step1_host(a,b,c,d,e,f,g,h,in[8],Kshared[8]); sha2_step1_host(h,a,b,c,d,e,f,g,in[9],Kshared[9]); sha2_step1_host(g,h,a,b,c,d,e,f,in[10],Kshared[10]); sha2_step1_host(f,g,h,a,b,c,d,e,in[11],Kshared[11]); sha2_step1_host(e,f,g,h,a,b,c,d,in[12],Kshared[12]); sha2_step1_host(d,e,f,g,h,a,b,c,in[13],Kshared[13]); sha2_step1_host(c,d,e,f,g,h,a,b,in[14],Kshared[14]); sha2_step1_host(b,c,d,e,f,g,h,a,in[15],Kshared[15]); #pragma unroll 3 for (int i=0;i<3;i++) { sha2_step2_host(a,b,c,d,e,f,g,h,in,0,Kshared[16+16*i]); sha2_step2_host(h,a,b,c,d,e,f,g,in,1,Kshared[17+16*i]); sha2_step2_host(g,h,a,b,c,d,e,f,in,2,Kshared[18+16*i]); sha2_step2_host(f,g,h,a,b,c,d,e,in,3,Kshared[19+16*i]); sha2_step2_host(e,f,g,h,a,b,c,d,in,4,Kshared[20+16*i]); sha2_step2_host(d,e,f,g,h,a,b,c,in,5,Kshared[21+16*i]); sha2_step2_host(c,d,e,f,g,h,a,b,in,6,Kshared[22+16*i]); sha2_step2_host(b,c,d,e,f,g,h,a,in,7,Kshared[23+16*i]); sha2_step2_host(a,b,c,d,e,f,g,h,in,8,Kshared[24+16*i]); sha2_step2_host(h,a,b,c,d,e,f,g,in,9,Kshared[25+16*i]); sha2_step2_host(g,h,a,b,c,d,e,f,in,10,Kshared[26+16*i]); sha2_step2_host(f,g,h,a,b,c,d,e,in,11,Kshared[27+16*i]); sha2_step2_host(e,f,g,h,a,b,c,d,in,12,Kshared[28+16*i]); sha2_step2_host(d,e,f,g,h,a,b,c,in,13,Kshared[29+16*i]); sha2_step2_host(c,d,e,f,g,h,a,b,in,14,Kshared[30+16*i]); sha2_step2_host(b,c,d,e,f,g,h,a,in,15,Kshared[31+16*i]); } r[0] = r[0] + a; r[1] = r[1] + b; r[2] = r[2] + c; r[3] = r[3] + d; r[4] = r[4] + e; r[5] = r[5] + f; r[6] = r[6] + g; r[7] = r[7] + h; } __global__ void m7_sha256_gpu_hash_120(int threads, uint32_t startNounce, uint64_t *outputHash) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = startNounce + thread ; // original implementation uint32_t buf[8]; uint32_t in2[16]={0}; uint32_t in3[16]={0}; #pragma unroll 13 for (int i=0; i<13; i++) in2[i]= cuda_swab32(c_PaddedMessage80[i+16]); in2[13]=cuda_swab32(nounce); in2[14]=cuda_swab32(c_PaddedMessage80[30]); in3[15]=0x3d0; #pragma unroll 8 for (int i=0; i<8; i++) buf[i] = pbuf[i]; sha2_round_body(in2,buf,K); sha2_round_body(in3,buf,K); #pragma unroll 4 for (int i=0; i<4; i++) { outputHash[i*threads+thread] = cuda_swab32ll(((uint64_t*)buf)[i]); } } // thread } __global__ void m7_sha256_gpu_hash_300(int threads, uint32_t startNounce, uint64_t *g_hash1, uint64_t *g_nonceVector, uint32_t *resNounce) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t in[16],buf[8]; #pragma unroll 8 for (int i=0;i<8;i++) {((uint64_t*)in)[i]= cuda_swab32ll(g_hash1[threads*i+thread]);} #pragma unroll 8 for (int i=0;i<8;i++) {buf[i] = H256[i];} sha2_round_body(in,buf,K); #pragma unroll 8 for (int i=0;i<8;i++) {((uint64_t*)in)[i]= cuda_swab32ll(g_hash1[threads*(i+8)+thread]);} sha2_round_body(in,buf,K); #pragma unroll 8 for (int i=0;i<8;i++) {((uint64_t*)in)[i]= cuda_swab32ll(g_hash1[threads*(i+16)+thread]);} sha2_round_body(in,buf,K); #pragma unroll 8 for (int i=0;i<8;i++) {((uint64_t*)in)[i]= cuda_swab32ll(g_hash1[threads*(i+24)+thread]);} sha2_round_body(in,buf,K); #pragma unroll 5 for (int i=0;i<5;i++) {((uint64_t*)in)[i]= cuda_swab32ll(g_hash1[threads*(i+32)+thread]);} ((uint64_t*)in)[5] = g_hash1[threads*(5+32)+thread]; in[11]=0; in[12]=0; in[13]=0; in[14]=0; in[15]=0x968; int it=0; do { in[15]-=8; it++; } while (((uint8_t*)in)[44-it]==0); ((uint8_t*)in)[44-it+1]=0x80; ((uint64_t*)in)[5]= cuda_swab32ll(((uint64_t*)in)[5]); sha2_round_body(in,buf,K); uint32_t nounce = startNounce +thread; bool rc = false; #pragma unroll 4 for (int i = 0; i < 4; i++) { if (cuda_swab32ll(((uint64_t*)buf)[i]) != ((uint64_t*)pTarget)[i]) { if (cuda_swab32ll(((uint64_t*)buf)[i]) < ((uint64_t*)pTarget)[i]) rc = true; else rc = false; //if cuda_swab32(((uint64_t*)buf)[3]) < ((uint64_t*)pTarget)[3]) {rc = true;} } } if (rc && resNounce[0] > nounce) resNounce[0] = nounce; } // thread } __host__ void m7_sha256_cpu_init(int thr_id, int threads) { cudaMemcpyToSymbol( H256,cpu_H256,sizeof(cpu_H256),0, cudaMemcpyHostToDevice ); cudaMemcpyToSymbol( K,cpu_K,sizeof(cpu_K),0, cudaMemcpyHostToDevice ); cudaMalloc(&d_MNonce[thr_id], sizeof(uint32_t)); cudaMallocHost(&d_mnounce[thr_id], 1*sizeof(uint32_t)); } __host__ uint32_t m7_sha256_cpu_hash_300(int thr_id, int threads, uint32_t startNounce, uint64_t *d_nonceVector,uint64_t *d_hash, int order) { const int threadsperblock = 384; uint32_t result = 0xffffffff; cudaMemset(d_MNonce[thr_id], 0xff, sizeof(uint32_t)); dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; m7_sha256_gpu_hash_300<<>>(threads, startNounce, d_hash, d_nonceVector, d_MNonce[thr_id]); cudaMemcpy(d_mnounce[thr_id], d_MNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); MyStreamSynchronize(NULL, order, thr_id); result = *d_mnounce[thr_id]; return result; } __host__ void m7_sha256_cpu_hash_120(int thr_id, int threads, uint32_t startNounce, uint64_t *d_outputHash, int order) { const int threadsperblock = 512; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; m7_sha256_gpu_hash_120<<>>(threads, startNounce, d_outputHash); MyStreamSynchronize(NULL, order, thr_id); } __host__ void m7_sha256_setBlock_120(void *pdata,const void *ptarget) //not useful { unsigned char PaddedMessage[128]; uint8_t ending =0x80; memcpy(PaddedMessage, pdata, 122); memset(PaddedMessage+122,ending,1); memset(PaddedMessage+123, 0, 5); //useless cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); cudaMemcpyToSymbol( pTarget, ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice); /// do first loop here... /// uint32_t * alt_data = (uint32_t*) PaddedMessage; uint32_t in[16],buf[8]; for (int i=0;i<16;i++) {in[i]= host_swab32(alt_data[i]);} for (int i=0;i<8;i++) {buf[i]= cpu_H256[i];} sha2_round_body_host(in,buf,cpu_K); cudaMemcpyToSymbol( pbuf, buf, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice); }