/** * Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2) * * Tanguy Pruvot - Feb 2016 * * Revised for optimisation by pallas @ bitcointalk - Apr 2016 */ #include <stdint.h> #include <memory.h> #include <miner.h> extern "C" { #include <sph/sph_blake.h> } /* threads per block */ #define TPB 512 /* nonces per round */ #define NPR 128 /* hash by cpu with blake 256 */ extern "C" void decred_hash(void *output, const void *input) { sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 180); sph_blake256_close(&ctx, output); } #include <cuda_helper.h> #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #endif __constant__ uint32_t _ALIGN(4) d_data[24]; /* 16 adapters max */ static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; /* max count of found nonces in one call */ #define NBN 2 #if NBN > 1 static uint32_t extra_results[NBN] = { UINT32_MAX }; #endif /* ############################################################################################################################### */ #define GSPREC(a,b,c,d,x,y) { \ v[a] += (m[x] ^ c_u256[y]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a], 0, 0x1032); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ v[a] += (m[y] ^ c_u256[x]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a], 0, 0x0321); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } #define GSPREC4(a0,b0,c0,d0,x0,y0,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \ v[a0] += (m[x0] ^ c_u256[y0]) + v[b0]; \ v[a1] += (m[x1] ^ c_u256[y1]) + v[b1]; \ v[a2] += (m[x2] ^ c_u256[y2]) + v[b2]; \ v[a3] += (m[x3] ^ c_u256[y3]) + v[b3]; \ v[d0] = __byte_perm(v[d0] ^ v[a0], 0, 0x1032); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \ v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \ v[c0] += v[d0]; \ v[c1] += v[d1]; \ v[c2] += v[d2]; \ v[c3] += v[d3]; \ v[b0] = SPH_ROTR32(v[b0] ^ v[c0], 12); \ v[b1] = SPH_ROTR32(v[b1] ^ v[c1], 12); \ v[b2] = SPH_ROTR32(v[b2] ^ v[c2], 12); \ v[b3] = SPH_ROTR32(v[b3] ^ v[c3], 12); \ v[a0] += (m[y0] ^ c_u256[x0]) + v[b0]; \ v[a1] += (m[y1] ^ c_u256[x1]) + v[b1]; \ v[a2] += (m[y2] ^ c_u256[x2]) + v[b2]; \ v[a3] += (m[y3] ^ c_u256[x3]) + v[b3]; \ v[d0] = __byte_perm(v[d0] ^ v[a0], 0, 0x0321); \ v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \ v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \ v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \ v[c0] += v[d0]; \ v[c1] += v[d1]; \ v[c2] += v[d2]; \ v[c3] += v[d3]; \ v[b0] = SPH_ROTR32(v[b0] ^ v[c0], 7); \ v[b1] = SPH_ROTR32(v[b1] ^ v[c1], 7); \ v[b2] = SPH_ROTR32(v[b2] ^ v[c2], 7); \ v[b3] = SPH_ROTR32(v[b3] ^ v[c3], 7); \ } static const __constant__ uint32_t c_u256[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; __device__ __forceinline__ uint32_t blake256_compress_14(uint32_t *m, uint32_t *v_init, uint32_t d_data6, uint32_t d_data7) { uint32_t v[16]; #pragma unroll for (uint32_t i = 0; i < 16; i++) v[i] = v_init[i]; // these two are not modified: v[ 9] = 0x85A308D3; v[13] = 0x299F31D0 ^ (180U*8U); // round 1 with nonce GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10, 11); GSPREC(2, 7, 0x8, 0xD, 12, 13); GSPREC(3, 4, 0x9, 0xE, 14, 15); // round 2 GSPREC4(0, 4, 0x8, 0xC, 14, 10, 1, 5, 0x9, 0xD, 4, 8, 2, 6, 0xA, 0xE, 9, 15, 3, 7, 0xB, 0xF, 13, 6); GSPREC4(0, 5, 0xA, 0xF, 1, 12, 1, 6, 0xB, 0xC, 0, 2, 2, 7, 0x8, 0xD, 11, 7, 3, 4, 0x9, 0xE, 5, 3); // round 3 GSPREC4(0, 4, 0x8, 0xC, 11, 8, 1, 5, 0x9, 0xD, 12, 0, 2, 6, 0xA, 0xE, 5, 2, 3, 7, 0xB, 0xF, 15, 13); GSPREC4(0, 5, 0xA, 0xF, 10, 14, 1, 6, 0xB, 0xC, 3, 6, 2, 7, 0x8, 0xD, 7, 1, 3, 4, 0x9, 0xE, 9, 4); // round 4 GSPREC4(0, 4, 0x8, 0xC, 7, 9, 1, 5, 0x9, 0xD, 3, 1, 2, 6, 0xA, 0xE, 13, 12, 3, 7, 0xB, 0xF, 11, 14); GSPREC4(0, 5, 0xA, 0xF, 2, 6, 1, 6, 0xB, 0xC, 5, 10, 2, 7, 0x8, 0xD, 4, 0, 3, 4, 0x9, 0xE, 15, 8); // round 5 GSPREC4(0, 4, 0x8, 0xC, 9, 0, 1, 5, 0x9, 0xD, 5, 7, 2, 6, 0xA, 0xE, 2, 4, 3, 7, 0xB, 0xF, 10, 15); GSPREC4(0, 5, 0xA, 0xF, 14, 1, 1, 6, 0xB, 0xC, 11, 12, 2, 7, 0x8, 0xD, 6, 8, 3, 4, 0x9, 0xE, 3, 13); // round 6 GSPREC4(0, 4, 0x8, 0xC, 2, 12, 1, 5, 0x9, 0xD, 6, 10, 2, 6, 0xA, 0xE, 0, 11, 3, 7, 0xB, 0xF, 8, 3); GSPREC4(0, 5, 0xA, 0xF, 4, 13, 1, 6, 0xB, 0xC, 7, 5, 2, 7, 0x8, 0xD, 15,14, 3, 4, 0x9, 0xE, 1, 9); // round 7 GSPREC4(0, 4, 0x8, 0xC, 12, 5, 1, 5, 0x9, 0xD, 1, 15, 2, 6, 0xA, 0xE, 14,13, 3, 7, 0xB, 0xF, 4, 10); GSPREC4(0, 5, 0xA, 0xF, 0, 7, 1, 6, 0xB, 0xC, 6, 3, 2, 7, 0x8, 0xD, 9, 2, 3, 4, 0x9, 0xE, 8, 11); #ifdef FULL_4WAY // round 8 GSPREC4(0, 4, 0x8, 0xC, 13,11, 1, 5, 0x9, 0xD, 7, 14, 2, 6, 0xA, 0xE, 12, 1, 3, 7, 0xB, 0xF, 3, 9); GSPREC4(0, 5, 0xA, 0xF, 5, 0, 1, 6, 0xB, 0xC, 15, 4, 2, 7, 0x8, 0xD, 8, 6, 3, 4, 0x9, 0xE, 2, 10); // round 9 GSPREC4(0, 4, 0x8, 0xC, 6, 15, 1, 5, 0x9, 0xD, 14, 9, 2, 6, 0xA, 0xE, 11, 3, 3, 7, 0xB, 0xF, 0, 8); GSPREC4(0, 5, 0xA, 0xF, 12, 2, 1, 6, 0xB, 0xC, 13, 7, 2, 7, 0x8, 0xD, 1, 4, 3, 4, 0x9, 0xE, 10, 5); // round 10 GSPREC4(0, 4, 0x8, 0xC, 10, 2, 1, 5, 0x9, 0xD, 8, 4, 2, 6, 0xA, 0xE, 7, 6, 3, 7, 0xB, 0xF, 1, 5); GSPREC4(0, 5, 0xA, 0xF, 15,11, 1, 6, 0xB, 0xC, 9, 14, 2, 7, 0x8, 0xD, 3, 12, 3, 4, 0x9, 0xE, 13, 0); // round 11 GSPREC4(0, 4, 0x8, 0xC, 0, 1, 1, 5, 0x9, 0xD, 2, 3, 2, 6, 0xA, 0xE, 4, 5, 3, 7, 0xB, 0xF, 6, 7); GSPREC4(0, 5, 0xA, 0xF, 8, 9, 1, 6, 0xB, 0xC, 10,11, 2, 7, 0x8, 0xD, 12,13, 3, 4, 0x9, 0xE, 14,15); // round 12 GSPREC4(0, 4, 0x8, 0xC, 14,10, 1, 5, 0x9, 0xD, 4, 8, 2, 6, 0xA, 0xE, 9, 15, 3, 7, 0xB, 0xF, 13, 6); GSPREC4(0, 5, 0xA, 0xF, 1, 12, 1, 6, 0xB, 0xC, 0, 2, 2, 7, 0x8, 0xD, 11, 7, 3, 4, 0x9, 0xE, 5, 3); // round 13 GSPREC4(0, 4, 0x8, 0xC, 11, 8, 1, 5, 0x9, 0xD, 12, 0, 2, 6, 0xA, 0xE, 5, 2, 3, 7, 0xB, 0xF, 15,13); GSPREC4(0, 5, 0xA, 0xF, 10,14, 1, 6, 0xB, 0xC, 3, 6, 2, 7, 0x8, 0xD, 7, 1, 3, 4, 0x9, 0xE, 9, 4); #else // round 8 GSPREC(0, 4, 0x8, 0xC, 13,11); GSPREC(1, 5, 0x9, 0xD, 7, 14); GSPREC(2, 6, 0xA, 0xE, 12, 1); GSPREC(3, 7, 0xB, 0xF, 3, 9); GSPREC(0, 5, 0xA, 0xF, 5, 0); GSPREC(1, 6, 0xB, 0xC, 15, 4); GSPREC(2, 7, 0x8, 0xD, 8, 6); GSPREC(3, 4, 0x9, 0xE, 2, 10); // round 9 GSPREC(0, 4, 0x8, 0xC, 6, 15); GSPREC(1, 5, 0x9, 0xD, 14, 9); GSPREC(2, 6, 0xA, 0xE, 11, 3); GSPREC(3, 7, 0xB, 0xF, 0, 8); GSPREC(0, 5, 0xA, 0xF, 12, 2); GSPREC(1, 6, 0xB, 0xC, 13, 7); GSPREC(2, 7, 0x8, 0xD, 1, 4); GSPREC(3, 4, 0x9, 0xE, 10, 5); // round 10 GSPREC(0, 4, 0x8, 0xC, 10, 2); GSPREC(1, 5, 0x9, 0xD, 8, 4); GSPREC(2, 6, 0xA, 0xE, 7, 6); GSPREC(3, 7, 0xB, 0xF, 1, 5); GSPREC(0, 5, 0xA, 0xF, 15,11); GSPREC(1, 6, 0xB, 0xC, 9, 14); GSPREC(2, 7, 0x8, 0xD, 3, 12); GSPREC(3, 4, 0x9, 0xE, 13, 0); // round 11 GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10,11); GSPREC(2, 7, 0x8, 0xD, 12,13); GSPREC(3, 4, 0x9, 0xE, 14,15); // round 12 GSPREC(0, 4, 0x8, 0xC, 14,10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // round 13 GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15,13); GSPREC(0, 5, 0xA, 0xF, 10,14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); #endif // round 14 GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13,12); GSPREC(3, 7, 0xB, 0xF, 11,14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(2, 7, 0x8, 0xD, 4, 0); if ((d_data7 ^ v[7] ^ v[15]) == 0) { GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(3, 4, 0x9, 0xE, 15, 8); return (d_data6 ^ v[6] ^ v[14]); } return UINT32_MAX; } /* ############################################################################################################################### */ // ------ Close: Last 52/64 bytes ------ __global__ void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); // if (thread < threads) { const uint32_t nonce = startNonce + thread * NPR; uint32_t m[16], v[16], temp; const uint32_t d_data6 = d_data[6], d_data7 = d_data[7]; #pragma unroll for(int i = 0; i < 8; i++) v[i] = d_data[i]; #pragma unroll for (uint32_t i = 0; i < 16; i++) m[i] = d_data[i+8U]; v[ 8] = 0x243F6A88; v[ 9] = 0x85A308D3; v[10] = 0x13198A2E; v[11] = 0x03707344; v[12] = 0xA4093822 ^ (180U*8U); v[13] = 0x299F31D0 ^ (180U*8U); v[14] = 0x082EFA98; v[15] = 0xEC4E6C89; // round 1 without nonce GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); for (m[3] = nonce; m[3] < nonce + NPR; m[3]++) { temp = blake256_compress_14(m, v, d_data6, d_data7); if (temp != UINT32_MAX && cuda_swab32(temp) <= highTarget) { #if NBN == 2 if (resNonce[0] != UINT32_MAX) resNonce[1] = m[3]; else resNonce[0] = m[3]; #else resNonce[0] = m[3]; #endif // from alexis78: // return statement allows CUDA7.5 to : // 1. Store the values fetched from constant memory in registers. // 2. Perform more precomputations on the outside of the for loop. // 3. Stop the continuous fetches from the constant memory while iterating return; } } } } __host__ static uint32_t decred_cpu_hash_nonce(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget) { uint32_t result = UINT32_MAX; const uint32_t real_threads = threads / NPR; dim3 grid((real_threads + TPB-1)/TPB); dim3 block(TPB); /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) return result; blake256_gpu_hash_nonce <<<grid, block>>> (real_threads, startNonce, d_resNonce[thr_id], highTarget); cudaThreadSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { result = h_resNonce[thr_id][0]; #if NBN > 1 for (int n=0; n < (NBN-1); n++) extra_results[n] = h_resNonce[thr_id][n+1]; #endif } return result; } __host__ static void decred_midstate_128(uint32_t *output, const uint32_t *input) { sph_blake256_context ctx; sph_blake256_set_rounds(14); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 128); memcpy(output, (void*)ctx.H, 32); } __host__ void decred_cpu_setBlock_52(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget) { uint32_t _ALIGN(64) data[24]; memcpy(data, midstate, 32); // pre swab32 for (int i=0; i<13; i++) data[8+i] = swab32(penddata[i]); data[21] = 0x80000001; data[22] = 0; data[23] = 0x000005a0; CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 64, 0, cudaMemcpyHostToDevice)); } /* ############################################################################################################################### */ static bool init[MAX_GPUS] = { 0 }; // nonce position is different in decred #define DCR_NONCE_OFT32 35 extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t _ALIGN(64) endiandata[48]; uint32_t _ALIGN(64) midstate[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; uint32_t *pnonce = &pdata[DCR_NONCE_OFT32]; const uint32_t first_nonce = *pnonce; uint64_t targetHigh = ((uint64_t*)ptarget)[3]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25; if (device_sm[dev_id] < 350) intensity = 22; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); int rc = 0; if (opt_benchmark) { targetHigh = 0x1ULL << 32; ptarget[6] = swab32(0xff); } if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); init[thr_id] = true; } memcpy(endiandata, pdata, 180); decred_midstate_128(midstate, endiandata); decred_cpu_setBlock_52(&pdata[32], midstate, ptarget); do { // GPU HASH uint32_t foundNonce = decred_cpu_hash_nonce(thr_id, throughput, (*pnonce), targetHigh); if (foundNonce != UINT32_MAX) { uint32_t vhashcpu[8]; uint32_t Htarg = ptarget[6]; be32enc(&endiandata[DCR_NONCE_OFT32], foundNonce); decred_hash(vhashcpu, endiandata); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { rc = 1; work_set_target_ratio(work, vhashcpu); *hashes_done = (*pnonce) - first_nonce + throughput; work->nonces[0] = swab32(foundNonce); #if NBN > 1 if (extra_results[0] != UINT32_MAX) { be32enc(&endiandata[DCR_NONCE_OFT32], extra_results[0]); decred_hash(vhashcpu, endiandata); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { work->nonces[1] = swab32(extra_results[0]); if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) { work_set_target_ratio(work, vhashcpu); xchg(work->nonces[1], work->nonces[0]); } rc = 2; } extra_results[0] = UINT32_MAX; } #endif *pnonce = work->nonces[0]; return rc; } else if (opt_debug) { applog_hash(ptarget); applog_compare_hash(vhashcpu, ptarget); gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce); } } *pnonce += throughput; } while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce)); *hashes_done = (*pnonce) - first_nonce; return rc; } // cleanup extern "C" void free_decred(int thr_id) { if (!init[thr_id]) return; cudaDeviceSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }