/** * Lyra2 (v1) cuda implementation based on djm34 work - SM 5/5.2 * tpruvot@github 2015 */ #include #include #define TPB50 16 #define TPB52 8 #include "cuda_lyra2_sm2.cuh" #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 500 #include "cuda_lyra2_vectors.h" #define uint2x4 uint28 #define memshift 3 #define Ncol 8 #define NcolMask 0x7 __device__ uint2x4* DMatrix; static __device__ __forceinline__ void Gfunc(uint2 &a, uint2 &b, uint2 &c, uint2 &d) { a += b; d ^= a; d = SWAPUINT2(d); c += d; b ^= c; b = ROR2(b, 24); a += b; d ^= a; d = ROR2(d, 16); c += d; b ^= c; b = ROR2(b, 63); } static __device__ __forceinline__ void round_lyra(uint2x4* s) { Gfunc(s[0].x, s[1].x, s[2].x, s[3].x); Gfunc(s[0].y, s[1].y, s[2].y, s[3].y); Gfunc(s[0].z, s[1].z, s[2].z, s[3].z); Gfunc(s[0].w, s[1].w, s[2].w, s[3].w); Gfunc(s[0].x, s[1].y, s[2].z, s[3].w); Gfunc(s[0].y, s[1].z, s[2].w, s[3].x); Gfunc(s[0].z, s[1].w, s[2].x, s[3].y); Gfunc(s[0].w, s[1].x, s[2].y, s[3].z); } static __device__ __forceinline__ void reduceDuplex(uint2x4 state[4], uint32_t thread) { uint2x4 state1[3]; const uint32_t ps1 = (256 * thread); const uint32_t ps2 = (memshift * 7 + memshift * 8 + 256 * thread); #pragma unroll 4 for (int i = 0; i < 8; i++) { const uint32_t s1 = ps1 + i*memshift; const uint32_t s2 = ps2 - i*memshift; for (int j = 0; j < 3; j++) state1[j] = __ldg4(&(DMatrix+s1)[j]); for (int j = 0; j < 3; j++) state[j] ^= state1[j]; round_lyra(state); for (int j = 0; j < 3; j++) state1[j] ^= state[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state1[j]; } } static __device__ __forceinline__ void reduceDuplexRowSetup(const int rowIn, const int rowInOut, const int rowOut, uint2x4 state[4], uint32_t thread) { uint2x4 state1[3], state2[3]; const uint32_t ps1 = ( memshift*8 * rowIn + 256 * thread); const uint32_t ps2 = ( memshift*8 * rowInOut + 256 * thread); const uint32_t ps3 = (memshift*7 + memshift*8 * rowOut + 256 * thread); #pragma unroll 1 for (int i = 0; i < 8; i++) { const uint32_t s1 = ps1 + i*memshift; const uint32_t s2 = ps2 + i*memshift; for (int j = 0; j < 3; j++) state1[j]= __ldg4(&(DMatrix + s1)[j]); for (int j = 0; j < 3; j++) state2[j]= __ldg4(&(DMatrix + s2)[j]); for (int j = 0; j < 3; j++) { uint2x4 tmp = state1[j] + state2[j]; state[j] ^= tmp; } round_lyra(state); for (int j = 0; j < 3; j++) { const uint32_t s3 = ps3 - i*memshift; state1[j] ^= state[j]; (DMatrix + s3)[j] = state1[j]; } ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j+1] ^= ((uint2*)state)[j]; for (int j = 0; j < 3; j++) (DMatrix + s2)[j] = state2[j]; } } static __device__ __forceinline__ void reduceDuplexRowt(const int rowIn, const int rowInOut, const int rowOut, uint2x4* state, const uint32_t thread) { const uint32_t ps1 = (memshift * 8 * rowIn + 256 * thread); const uint32_t ps2 = (memshift * 8 * rowInOut + 256 * thread); const uint32_t ps3 = (memshift * 8 * rowOut + 256 * thread); #pragma unroll 1 for (int i = 0; i < 8; i++) { uint2x4 state1[3], state2[3]; const uint32_t s1 = ps1 + i*memshift; const uint32_t s2 = ps2 + i*memshift; for (int j = 0; j < 3; j++) { state1[j] = __ldg4(&(DMatrix + s1)[j]); state2[j] = __ldg4(&(DMatrix + s2)[j]); } #pragma unroll for (int j = 0; j < 3; j++) { state1[j] += state2[j]; state[j] ^= state1[j]; } round_lyra(state); ((uint2*)state2)[0] ^= ((uint2*)state)[11]; for (int j = 0; j < 11; j++) ((uint2*)state2)[j + 1] ^= ((uint2*)state)[j]; if (rowInOut == rowOut) { for (int j = 0; j < 3; j++) { state2[j] ^= state[j]; (DMatrix + s2)[j]=state2[j]; } } else { const uint32_t s3 = ps3 + i*memshift; for (int j = 0; j < 3; j++) { (DMatrix + s2)[j] = state2[j]; (DMatrix + s3)[j] ^= state[j]; } } } } #if __CUDA_ARCH__ == 500 __global__ __launch_bounds__(TPB50, 1) #else __global__ __launch_bounds__(TPB52, 2) #endif void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash) { const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); const uint2x4 blake2b_IV[2] = { {{ 0xf3bcc908, 0x6a09e667 }, { 0x84caa73b, 0xbb67ae85 }, { 0xfe94f82b, 0x3c6ef372 }, { 0x5f1d36f1, 0xa54ff53a }}, {{ 0xade682d1, 0x510e527f }, { 0x2b3e6c1f, 0x9b05688c }, { 0xfb41bd6b, 0x1f83d9ab }, { 0x137e2179, 0x5be0cd19 }} }; if (thread < threads) { uint2x4 state[4]; ((uint2*)state)[0] = __ldg(&g_hash[thread]); ((uint2*)state)[1] = __ldg(&g_hash[thread + threads]); ((uint2*)state)[2] = __ldg(&g_hash[thread + threads*2]); ((uint2*)state)[3] = __ldg(&g_hash[thread + threads*3]); state[1] = state[0]; state[2] = blake2b_IV[0]; state[3] = blake2b_IV[1]; for (int i = 0; i<24; i++) round_lyra(state); //because 12 is not enough const uint32_t ps1 = (memshift * 7 + 256 * thread); for (int i = 0; i < 8; i++) { const uint32_t s1 = ps1 - memshift * i; for (int j = 0; j < 3; j++) (DMatrix + s1)[j] = (state)[j]; round_lyra(state); } reduceDuplex(state, thread); reduceDuplexRowSetup(1, 0, 2, state, thread); reduceDuplexRowSetup(2, 1, 3, state, thread); reduceDuplexRowSetup(3, 0, 4, state, thread); reduceDuplexRowSetup(4, 3, 5, state, thread); reduceDuplexRowSetup(5, 2, 6, state, thread); reduceDuplexRowSetup(6, 1, 7, state, thread); uint32_t rowa = state[0].x.x & 7; reduceDuplexRowt(7, rowa, 0, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(0, rowa, 3, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(3, rowa, 6, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(6, rowa, 1, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(1, rowa, 4, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(4, rowa, 7, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(7, rowa, 2, state, thread); rowa = state[0].x.x & 7; reduceDuplexRowt(2, rowa, 5, state, thread); const int32_t shift = (memshift * 8 * rowa + 256 * thread); #pragma unroll for (int j = 0; j < 3; j++) state[j] ^= __ldg4(&(DMatrix + shift)[j]); for (int i = 0; i < 12; i++) round_lyra(state); g_hash[thread] = ((uint2*)state)[0]; g_hash[thread + threads] = ((uint2*)state)[1]; g_hash[thread + threads*2] = ((uint2*)state)[2]; g_hash[thread + threads*3] = ((uint2*)state)[3]; } } #else /* for unsupported SM arch */ __device__ void* DMatrix; __global__ void lyra2_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint2 *g_hash) {} #endif __host__ void lyra2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix) { cuda_get_arch(thr_id); cudaMemcpyToSymbol(DMatrix, &d_matrix, sizeof(uint64_t*), 0, cudaMemcpyHostToDevice); } __host__ void lyra2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order) { int dev_id = device_map[thr_id % MAX_GPUS]; uint32_t tpb = TPB52; if (device_sm[dev_id] == 500) tpb = TPB50; if (device_sm[dev_id] == 350) tpb = TPB30; // to enhance (or not) if (device_sm[dev_id] <= 300) tpb = TPB30; dim3 grid((threads + tpb - 1) / tpb); dim3 block(tpb); if (device_sm[dev_id] >= 500) lyra2_gpu_hash_32 <<< grid, block >>> (threads, startNounce, (uint2*)d_hash); else lyra2_gpu_hash_32_sm2 <<< grid, block >>> (threads, startNounce, d_hash); }