/** * Blake-256 Cuda Kernel (Tested on SM 5.0) * * Tanguy Pruvot - Nov. 2014 */ #define PRECALC64 1 #include "miner.h" extern "C" { #include "sph/sph_blake.h" #include #include } /* threads per block and throughput (intensity) */ #define TPB 128 #define INTENSITY (1 << 20) // = 1048576 nonces per call /* added in sph_blake.c */ extern "C" int blake256_rounds = 14; /* hash by cpu with blake 256 */ extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14) { uchar hash[64]; sph_blake256_context ctx; blake256_rounds = rounds; sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" #define MAXU 0xffffffffU // in cpu-miner.c extern bool opt_n_threads; extern bool opt_tracegpu; extern int device_map[8]; #if PRECALC64 __constant__ uint32_t _ALIGN(32) d_data[12]; #else __constant__ static uint32_t _ALIGN(32) c_data[20]; /* midstate hash cache, this algo is run on 2 parts */ __device__ static uint32_t cache[8]; __device__ static uint32_t prevsum = 0; /* crc32.c */ extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size); #endif /* 8 adapters max (-t threads) */ static uint32_t *d_resNonce[8]; static uint32_t *h_resNonce[8]; /* max count of found nonces in one call */ #define NBN 2 static uint32_t extra_results[NBN] = { MAXU }; /* prefer uint32_t to prevent size conversions = speed +5/10 % */ __constant__ static uint32_t _ALIGN(32) c_sigma[16][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, {12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, {13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, {10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, {14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, {11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } }; #if !PRECALC64 __device__ __constant__ static const uint32_t __align__(32) c_IV256[8] = { SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85), SPH_C32(0x3C6EF372), SPH_C32(0xA54FF53A), SPH_C32(0x510E527F), SPH_C32(0x9B05688C), SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19) }; #endif __device__ __constant__ static const uint32_t __align__(32) c_u256[16] = { SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344), SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89), SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C), SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917) }; #define GS(a,b,c,d,x) { \ const uint32_t idx1 = c_sigma[r][x]; \ const uint32_t idx2 = c_sigma[r][x+1]; \ v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \ v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ \ v[a] += (m[idx2] ^ c_u256[idx1]) + v[b]; \ v[d] = SPH_ROTR32(v[d] ^ v[a], 8); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } /* Second part (64-80) msg never change, store it */ __device__ __constant__ static const uint32_t __align__(32) c_Padding[16] = { 0, 0, 0, 0, 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; __device__ static void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, const int rounds) { uint32_t /*_ALIGN(8)*/ m[16]; uint32_t v[16]; m[0] = block[0]; m[1] = block[1]; m[2] = block[2]; m[3] = block[3]; for (uint32_t i = 4; i < 16; i++) { #if PRECALC64 m[i] = c_Padding[i]; #else m[i] = (T0 == 0x200) ? block[i] : c_Padding[i]; #endif } //#pragma unroll 8 for(uint32_t i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = c_u256[0]; v[ 9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ T0; v[13] = c_u256[5] ^ T0; v[14] = c_u256[6]; v[15] = c_u256[7]; for (int r = 0; r < rounds; r++) { /* column step */ GS(0, 4, 0x8, 0xC, 0x0); GS(1, 5, 0x9, 0xD, 0x2); GS(2, 6, 0xA, 0xE, 0x4); GS(3, 7, 0xB, 0xF, 0x6); /* diagonal step */ GS(0, 5, 0xA, 0xF, 0x8); GS(1, 6, 0xB, 0xC, 0xA); GS(2, 7, 0x8, 0xD, 0xC); GS(3, 4, 0x9, 0xE, 0xE); } #if PRECALC64 // only compute h6 & 7 h[6U] ^= v[6U] ^ v[14U]; h[7U] ^= v[7U] ^ v[15U]; #else //#pragma unroll 16 for (uint32_t i = 0; i < 16; i++) { uint32_t j = i % 8U; h[j] ^= v[i]; } #endif } #if !PRECALC64 /* original method */ __global__ void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget, const int crcsum, const int rounds) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nonce = startNonce + thread; uint32_t h[8]; #pragma unroll for(int i=0; i<8; i++) { h[i] = c_IV256[i]; } if (crcsum != prevsum) { prevsum = crcsum; blake256_compress(h, c_data, 512, rounds); #pragma unroll for(int i=0; i<8; i++) { cache[i] = h[i]; } } else { #pragma unroll for(int i=0; i<8; i++) { h[i] = cache[i]; } } // ------ Close: Bytes 64 to 80 ------ uint32_t ending[4]; ending[0] = c_data[16]; ending[1] = c_data[17]; ending[2] = c_data[18]; ending[3] = nonce; /* our tested value */ blake256_compress(h, ending, 640, rounds); // not sure why, h[7] is ok h[6] = cuda_swab32(h[6]); // compare count of leading zeros h[6] + h[7] uint64_t high64 = ((uint64_t*)h)[3]; if (high64 <= highTarget) #if NBN == 2 /* keep the smallest nonce, + extra one if found */ if (resNonce[0] > nonce) { // printf("%llx %llx \n", high64, highTarget); resNonce[1] = resNonce[0]; resNonce[0] = nonce; } else resNonce[1] = nonce; #else resNonce[0] = nonce; #endif } } __host__ uint32_t blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget, const uint32_t crcsum, const int8_t rounds) { const int threadsperblock = TPB; uint32_t result = MAXU; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); size_t shared_size = 0; /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) return result; blake256_gpu_hash_80<<>>(threads, startNonce, d_resNonce[thr_id], highTarget, crcsum, (int) rounds); cudaDeviceSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { //cudaThreadSynchronize(); /* seems no more required */ result = h_resNonce[thr_id][0]; for (int n=0; n < (NBN-1); n++) extra_results[n] = h_resNonce[thr_id][n+1]; } return result; } __host__ void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget) { uint32_t data[20]; memcpy(data, pdata, 80); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice)); } #else /* ############################################################################################################################### */ /* Precalculated 1st 64-bytes block (midstate) method */ __global__ void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget, const int rounds, const bool trace) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nonce = startNonce + thread; uint32_t _ALIGN(16) h[8]; #pragma unroll for(int i=0; i < 8; i++) { h[i] = d_data[i]; } // ------ Close: Bytes 64 to 80 ------ uint32_t _ALIGN(16) ending[4]; ending[0] = d_data[8]; ending[1] = d_data[9]; ending[2] = d_data[10]; ending[3] = nonce; /* our tested value */ blake256_compress(h, ending, 640, rounds); //if (h[7] == 0 && high64 <= highTarget) { if (h[7] == 0) { #if NBN == 2 /* keep the smallest nonce, + extra one if found */ if (resNonce[0] > nonce) { // printf("%llx %llx \n", high64, highTarget); resNonce[1] = resNonce[0]; resNonce[0] = nonce; } else resNonce[1] = nonce; #else resNonce[0] = nonce; #endif if (trace) { #ifdef _DEBUG uint64_t high64 = ((uint64_t*)h)[3]; printf("gpu: %16llx\n", high64); printf("gpu: %08x.%08x\n", h[7], h[6]); printf("tgt: %16llx\n", highTarget); #endif } } } } __host__ static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget, const int8_t rounds) { const int threadsperblock = TPB; uint32_t result = MAXU; dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) return result; blake256_gpu_hash_16 <<>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int) rounds, opt_tracegpu); cudaDeviceSynchronize(); if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { //cudaThreadSynchronize(); /* seems no more required */ result = h_resNonce[thr_id][0]; for (int n=0; n < (NBN-1); n++) extra_results[n] = h_resNonce[thr_id][n+1]; } return result; } __host__ static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14) { sph_blake256_context ctx; /* in sph_blake.c */ blake256_rounds = rounds; sph_blake256_init(&ctx); sph_blake256(&ctx, input, 64); memcpy(output, (void*)ctx.H, 32); } __host__ void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget) { uint32_t _ALIGN(64) data[11]; memcpy(data, midstate, 32); data[8] = penddata[0]; data[9] = penddata[1]; data[10]= penddata[2]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice)); } #endif extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14) { const uint32_t first_nonce = pdata[19]; static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint64_t targetHigh = ((uint64_t*)ptarget)[3]; // 0x00000000.0fffffff uint32_t _ALIGN(64) endiandata[20]; #if PRECALC64 uint32_t _ALIGN(64) midstate[8]; #else uint32_t crcsum; #endif /* todo: -i param */ uint32_t throughput = min(INTENSITY, max_nonce - first_nonce); int rc = 0; #if NBN > 1 if (extra_results[0] != MAXU) { // possible extra result found in previous call if (first_nonce <= extra_results[0] && max_nonce >= extra_results[0]) { pdata[19] = extra_results[0]; *hashes_done = pdata[19] - first_nonce + 1; extra_results[0] = MAXU; rc = 1; goto exit_scan; } } #endif if (opt_benchmark) targetHigh = 0x1ULL << 32; if (opt_tracegpu) { /* test call from util.c */ throughput = 1; for (int k = 0; k < 20; k++) pdata[k] = swab32(pdata[k]); } if (!init[thr_id]) { if (opt_n_threads > 1) { CUDA_SAFE_CALL(cudaSetDevice(device_map[thr_id])); } CUDA_SAFE_CALL(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t))); CUDA_SAFE_CALL(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t))); init[thr_id] = true; } #if PRECALC64 for (int k = 0; k < 16; k++) be32enc(&endiandata[k], pdata[k]); blake256mid(midstate, endiandata, blakerounds); blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget); #else blake256_cpu_setBlock_80(pdata, ptarget); crcsum = crc32_u32t(pdata, 64); #endif /* PRECALC64 */ do { uint32_t foundNonce = #if PRECALC64 // GPU HASH (second block only, first is midstate) blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds); #else // GPU FULL HASH blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds); #endif if (foundNonce != MAXU) { uint32_t vhashcpu[8]; uint32_t Htarg = (uint32_t)targetHigh; for (int k=0; k < 19; k++) be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[19], foundNonce); blake256hash(vhashcpu, endiandata, blakerounds); //applog(LOG_BLUE, "%08x %16llx", vhashcpu[6], targetHigh); if (vhashcpu[6] <= Htarg /*&& fulltest(vhashcpu, ptarget)*/) { pdata[19] = foundNonce; rc = 1; if (extra_results[0] != MAXU) { // Rare but possible if the throughput is big be32enc(&endiandata[19], extra_results[0]); blake256hash(vhashcpu, endiandata, blakerounds); if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) { applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!"); rc = 2; } else { extra_results[0] = MAXU; } } //applog_hash((uint8_t*)ptarget); //applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget); goto exit_scan; } else if (opt_debug) { applog_hash((uint8_t*)ptarget); applog_compare_hash((uint8_t*)vhashcpu,(uint8_t*)ptarget); applog(LOG_DEBUG, "GPU #%d: result for nonce %08x does not validate on CPU!", thr_id, foundNonce); } } if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) { pdata[19] = max_nonce; break; } pdata[19] += throughput; } while (!work_restart[thr_id].restart); exit_scan: *hashes_done = pdata[19] - first_nonce + 1; // (+1 to prevent locks) return rc; }