extern "C" { #include "sph/sph_blake.h" #include "sph/sph_bmw.h" #include "sph/sph_skein.h" #include "sph/sph_keccak.h" #include "sph/sph_cubehash.h" #include "lyra2/Lyra2.h" } #include "miner.h" #include "cuda_helper.h" static _ALIGN(64) uint64_t *d_hash[MAX_GPUS]; static uint64_t* d_matrix[MAX_GPUS]; extern void blake256_cpu_init(int thr_id, uint32_t threads); extern void blake256_cpu_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNonce, uint64_t *Hash, int order); extern void blake256_cpu_setBlock_80(uint32_t *pdata); extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void keccak256_cpu_init(int thr_id, uint32_t threads); extern void keccak256_cpu_free(int thr_id); extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void skein256_cpu_init(int thr_id, uint32_t threads); extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order); extern void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order); extern void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t* d_matrix); extern void bmw256_setTarget(const void *ptarget); extern void bmw256_cpu_init(int thr_id, uint32_t threads); extern void bmw256_cpu_free(int thr_id); extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces); void lyra2v2_hash(void *state, const void *input) { uint32_t hashA[8], hashB[8]; sph_blake256_context ctx_blake; sph_keccak256_context ctx_keccak; sph_skein256_context ctx_skein; sph_bmw256_context ctx_bmw; sph_cubehash256_context ctx_cube; sph_blake256_init(&ctx_blake); sph_blake256(&ctx_blake, input, 80); sph_blake256_close(&ctx_blake, hashA); sph_keccak256_init(&ctx_keccak); sph_keccak256(&ctx_keccak, hashA, 32); sph_keccak256_close(&ctx_keccak, hashB); sph_cubehash256_init(&ctx_cube); sph_cubehash256(&ctx_cube, hashB, 32); sph_cubehash256_close(&ctx_cube, hashA); LYRA2(hashB, 32, hashA, 32, hashA, 32, 1, 4, 4); sph_skein256_init(&ctx_skein); sph_skein256(&ctx_skein, hashB, 32); sph_skein256_close(&ctx_skein, hashA); sph_cubehash256_init(&ctx_cube); sph_cubehash256(&ctx_cube, hashA, 32); sph_cubehash256_close(&ctx_cube, hashB); sph_bmw256_init(&ctx_bmw); sph_bmw256(&ctx_bmw, hashB, 32); sph_bmw256_close(&ctx_bmw, hashA); memcpy(state, hashA, 32); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_lyra2v2(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done) { uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 20 : 18; unsigned int defthr = 1U << intensity; uint32_t throughput = device_intensity(dev_id, __func__, defthr); if (opt_benchmark) ptarget[7] = 0x00ff; if (!init[thr_id]) { cudaSetDevice(dev_id); //cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); //if (opt_n_gputhreads == 1) // cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); cudaGetLastError(); blake256_cpu_init(thr_id, throughput); keccak256_cpu_init(thr_id,throughput); skein256_cpu_init(thr_id, throughput); bmw256_cpu_init(thr_id, throughput); if (device_sm[device_map[thr_id]] < 300) { applog(LOG_ERR, "Device SM 3.0 or more recent required!"); proper_exit(1); return -1; } // DMatrix (780Ti may prefer 16 instead of 12, cf djm34) CUDA_SAFE_CALL(cudaMalloc(&d_matrix[thr_id], (size_t)12 * sizeof(uint64_t) * 4 * 4 * throughput)); lyra2v2_cpu_init(thr_id, throughput, d_matrix[thr_id]); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t)32 * throughput)); init[thr_id] = true; } uint32_t endiandata[20]; for (int k=0; k < 20; k++) be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); blake256_cpu_setBlock_80(pdata); bmw256_setTarget(ptarget); do { int order = 0; uint32_t foundNonces[2] = { 0, 0 }; blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); lyra2v2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id], order++); bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces); *hashes_done = pdata[19] - first_nonce + throughput; if (foundNonces[0] != 0) { uint32_t vhash64[8]; be32enc(&endiandata[19], foundNonces[0]); lyra2v2_hash(vhash64, endiandata); if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) { int res = 1; work_set_target_ratio(work, vhash64); // check if there was another one... if (foundNonces[1] != 0) { be32enc(&endiandata[19], foundNonces[1]); lyra2v2_hash(vhash64, endiandata); if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) work_set_target_ratio(work, vhash64); pdata[21] = foundNonces[1]; res++; } pdata[19] = foundNonces[0]; MyStreamSynchronize(NULL, 0, device_map[thr_id]); return res; } else { applog(LOG_WARNING, "GPU #%d: result does not validate on CPU!", dev_id); } } pdata[19] += throughput; } while (!work_restart[thr_id].restart && (max_nonce > ((uint64_t)(pdata[19]) + throughput))); *hashes_done = pdata[19] - first_nonce + 1; MyStreamSynchronize(NULL, 0, device_map[thr_id]); return 0; } // cleanup extern "C" void free_lyra2v2(int thr_id) { if (!init[thr_id]) return; cudaSetDevice(device_map[thr_id]); cudaFree(d_hash[thr_id]); cudaFree(d_matrix[thr_id]); bmw256_cpu_free(thr_id); keccak256_cpu_free(thr_id); init[thr_id] = false; cudaDeviceSynchronize(); }