/* * Copyright 2009 Colin Percival, 2011 ArtForz, 2011-2013 pooler * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * This file was originally written by Colin Percival as part of the Tarsnap * online backup system. */ #ifdef WIN32 #include <ppl.h> using namespace Concurrency; #else #include <omp.h> #endif #include "miner.h" #include "scrypt/salsa_kernel.h" #include "scrypt/sha256.h" #include <stdlib.h> #include <stdint.h> #include <string.h> #include <emmintrin.h> #include <malloc.h> #include <new> // A thin wrapper around the builtin __m128i type class uint32x4_t { public: #if WIN32 void * operator new(size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); } void operator delete(void *p) { _aligned_free(p); } void * operator new[](size_t size) _THROW1(_STD bad_alloc) { void *p; if ((p = _aligned_malloc(size, 16)) == 0) { static const std::bad_alloc nomem; _RAISE(nomem); } return (p); } void operator delete[](void *p) { _aligned_free(p); } #else void * operator new(size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); } void operator delete(void *p) { free(p); } void * operator new[](size_t size) throw(std::bad_alloc) { void *p; if (posix_memalign(&p, 16, size) < 0) { static const std::bad_alloc nomem; throw nomem; } return (p); } void operator delete[](void *p) { free(p); } #endif uint32x4_t() { }; uint32x4_t(const __m128i init) { val = init; } uint32x4_t(const uint32_t init) { val = _mm_set1_epi32((int)init); } uint32x4_t(const uint32_t a, const uint32_t b, const uint32_t c, const uint32_t d) { val = _mm_setr_epi32((int)a,(int)b,(int)c,(int)d); } inline operator const __m128i() const { return val; } inline const uint32x4_t operator+(const uint32x4_t &other) const { return _mm_add_epi32(val, other); } inline const uint32x4_t operator+(const uint32_t other) const { return _mm_add_epi32(val, _mm_set1_epi32((int)other)); } inline uint32x4_t& operator+=(const uint32x4_t other) { val = _mm_add_epi32(val, other); return *this; } inline uint32x4_t& operator+=(const uint32_t other) { val = _mm_add_epi32(val, _mm_set1_epi32((int)other)); return *this; } inline const uint32x4_t operator&(const uint32_t other) const { return _mm_and_si128(val, _mm_set1_epi32((int)other)); } inline const uint32x4_t operator&(const uint32x4_t &other) const { return _mm_and_si128(val, other); } inline const uint32x4_t operator|(const uint32x4_t &other) const { return _mm_or_si128(val, other); } inline const uint32x4_t operator^(const uint32x4_t &other) const { return _mm_xor_si128(val, other); } inline const uint32x4_t operator<<(const int num) const { return _mm_slli_epi32(val, num); } inline const uint32x4_t operator>>(const int num) const { return _mm_srli_epi32(val, num); } inline const uint32_t operator[](const int num) const { return ((uint32_t*)&val)[num]; } protected: __m128i val; }; // non-member overload inline const uint32x4_t operator+(const uint32_t left, const uint32x4_t &right) { return _mm_add_epi32(_mm_set1_epi32((int)left), right); } // // Code taken from sha2.cpp and vectorized, with minimal changes where required // Not all subroutines are actually used. // #define bswap_32x4(x) ((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) \ | (((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) static __inline uint32x4_t swab32x4(const uint32x4_t &v) { return bswap_32x4(v); } static const uint32_t sha256_h[8] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 }; static const uint32_t sha256_k[64] = { 0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5, 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174, 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da, 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967, 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85, 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070, 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3, 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 }; void sha256_initx4(uint32x4_t *statex4) { for (int i=0; i<8; ++i) statex4[i] = sha256_h[i]; } /* Elementary functions used by SHA256 */ #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define ROTR(x, n) ((x >> n) | (x << (32 - n))) #define S0(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22)) #define S1(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25)) #define s0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ (x >> 3)) #define s1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ (x >> 10)) /* SHA256 round function */ #define RND(a, b, c, d, e, f, g, h, k) \ do { \ t0 = h + S1(e) + Ch(e, f, g) + k; \ t1 = S0(a) + Maj(a, b, c); \ d += t0; \ h = t0 + t1; \ } while (0) /* Adjusted round function for rotating state */ #define RNDr(S, W, i) \ RND(S[(64 - i) % 8], S[(65 - i) % 8], \ S[(66 - i) % 8], S[(67 - i) % 8], \ S[(68 - i) % 8], S[(69 - i) % 8], \ S[(70 - i) % 8], S[(71 - i) % 8], \ W[i] + sha256_k[i]) /* * SHA256 block compression function. The 256-bit state is transformed via * the 512-bit input block to produce a new state. */ void sha256_transformx4(uint32x4_t *state, const uint32x4_t *block, int swap) { uint32x4_t W[64]; uint32x4_t S[8]; uint32x4_t t0, t1; int i; /* 1. Prepare message schedule W. */ if (swap) { for (i = 0; i < 16; i++) W[i] = swab32x4(block[i]); } else memcpy(W, block, 4*64); for (i = 16; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } /* 2. Initialize working variables. */ memcpy(S, state, 4*32); /* 3. Mix. */ RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); /* 4. Mix local working variables into global state */ for (i = 0; i < 8; i++) state[i] += S[i]; } static const uint32_t sha256d_hash1[16] = { 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000100 }; static void sha256dx4(uint32x4_t *hash, uint32x4_t *data) { uint32x4_t S[16]; sha256_initx4(S); sha256_transformx4(S, data, 0); sha256_transformx4(S, data + 16, 0); for (int i=8; i<16; ++i) S[i] = sha256d_hash1[i]; sha256_initx4(hash); sha256_transformx4(hash, S, 0); } static inline void sha256d_preextendx4(uint32x4_t *W) { W[16] = s1(W[14]) + W[ 9] + s0(W[ 1]) + W[ 0]; W[17] = s1(W[15]) + W[10] + s0(W[ 2]) + W[ 1]; W[18] = s1(W[16]) + W[11] + W[ 2]; W[19] = s1(W[17]) + W[12] + s0(W[ 4]); W[20] = W[13] + s0(W[ 5]) + W[ 4]; W[21] = W[14] + s0(W[ 6]) + W[ 5]; W[22] = W[15] + s0(W[ 7]) + W[ 6]; W[23] = W[16] + s0(W[ 8]) + W[ 7]; W[24] = W[17] + s0(W[ 9]) + W[ 8]; W[25] = s0(W[10]) + W[ 9]; W[26] = s0(W[11]) + W[10]; W[27] = s0(W[12]) + W[11]; W[28] = s0(W[13]) + W[12]; W[29] = s0(W[14]) + W[13]; W[30] = s0(W[15]) + W[14]; W[31] = s0(W[16]) + W[15]; } static inline void sha256d_prehashx4(uint32x4_t *S, const uint32x4_t *W) { uint32x4_t t0, t1; RNDr(S, W, 0); RNDr(S, W, 1); RNDr(S, W, 2); } static inline void sha256d_msx4(uint32x4_t *hash, uint32x4_t *W, const uint32_t *midstate, const uint32_t *prehash) { uint32x4_t S[64]; uint32x4_t t0, t1; int i; S[18] = W[18]; S[19] = W[19]; S[20] = W[20]; S[22] = W[22]; S[23] = W[23]; S[24] = W[24]; S[30] = W[30]; S[31] = W[31]; W[18] += s0(W[3]); W[19] += W[3]; W[20] += s1(W[18]); W[21] = s1(W[19]); W[22] += s1(W[20]); W[23] += s1(W[21]); W[24] += s1(W[22]); W[25] = s1(W[23]) + W[18]; W[26] = s1(W[24]) + W[19]; W[27] = s1(W[25]) + W[20]; W[28] = s1(W[26]) + W[21]; W[29] = s1(W[27]) + W[22]; W[30] += s1(W[28]) + W[23]; W[31] += s1(W[29]) + W[24]; for (i = 32; i < 64; i += 2) { W[i] = s1(W[i - 2]) + W[i - 7] + s0(W[i - 15]) + W[i - 16]; W[i+1] = s1(W[i - 1]) + W[i - 6] + s0(W[i - 14]) + W[i - 15]; } for (i=0; i<8; ++i) S[i] = prehash[i]; RNDr(S, W, 3); RNDr(S, W, 4); RNDr(S, W, 5); RNDr(S, W, 6); RNDr(S, W, 7); RNDr(S, W, 8); RNDr(S, W, 9); RNDr(S, W, 10); RNDr(S, W, 11); RNDr(S, W, 12); RNDr(S, W, 13); RNDr(S, W, 14); RNDr(S, W, 15); RNDr(S, W, 16); RNDr(S, W, 17); RNDr(S, W, 18); RNDr(S, W, 19); RNDr(S, W, 20); RNDr(S, W, 21); RNDr(S, W, 22); RNDr(S, W, 23); RNDr(S, W, 24); RNDr(S, W, 25); RNDr(S, W, 26); RNDr(S, W, 27); RNDr(S, W, 28); RNDr(S, W, 29); RNDr(S, W, 30); RNDr(S, W, 31); RNDr(S, W, 32); RNDr(S, W, 33); RNDr(S, W, 34); RNDr(S, W, 35); RNDr(S, W, 36); RNDr(S, W, 37); RNDr(S, W, 38); RNDr(S, W, 39); RNDr(S, W, 40); RNDr(S, W, 41); RNDr(S, W, 42); RNDr(S, W, 43); RNDr(S, W, 44); RNDr(S, W, 45); RNDr(S, W, 46); RNDr(S, W, 47); RNDr(S, W, 48); RNDr(S, W, 49); RNDr(S, W, 50); RNDr(S, W, 51); RNDr(S, W, 52); RNDr(S, W, 53); RNDr(S, W, 54); RNDr(S, W, 55); RNDr(S, W, 56); RNDr(S, W, 57); RNDr(S, W, 58); RNDr(S, W, 59); RNDr(S, W, 60); RNDr(S, W, 61); RNDr(S, W, 62); RNDr(S, W, 63); for (i = 0; i < 8; i++) S[i] += midstate[i]; W[18] = S[18]; W[19] = S[19]; W[20] = S[20]; W[22] = S[22]; W[23] = S[23]; W[24] = S[24]; W[30] = S[30]; W[31] = S[31]; for (i=8; i<16; ++i) S[i] = sha256d_hash1[i]; S[16] = s1(sha256d_hash1[14]) + sha256d_hash1[ 9] + s0(S[ 1]) + S[ 0]; S[17] = s1(sha256d_hash1[15]) + sha256d_hash1[10] + s0(S[ 2]) + S[ 1]; S[18] = s1(S[16]) + sha256d_hash1[11] + s0(S[ 3]) + S[ 2]; S[19] = s1(S[17]) + sha256d_hash1[12] + s0(S[ 4]) + S[ 3]; S[20] = s1(S[18]) + sha256d_hash1[13] + s0(S[ 5]) + S[ 4]; S[21] = s1(S[19]) + sha256d_hash1[14] + s0(S[ 6]) + S[ 5]; S[22] = s1(S[20]) + sha256d_hash1[15] + s0(S[ 7]) + S[ 6]; S[23] = s1(S[21]) + S[16] + s0(sha256d_hash1[ 8]) + S[ 7]; S[24] = s1(S[22]) + S[17] + s0(sha256d_hash1[ 9]) + sha256d_hash1[ 8]; S[25] = s1(S[23]) + S[18] + s0(sha256d_hash1[10]) + sha256d_hash1[ 9]; S[26] = s1(S[24]) + S[19] + s0(sha256d_hash1[11]) + sha256d_hash1[10]; S[27] = s1(S[25]) + S[20] + s0(sha256d_hash1[12]) + sha256d_hash1[11]; S[28] = s1(S[26]) + S[21] + s0(sha256d_hash1[13]) + sha256d_hash1[12]; S[29] = s1(S[27]) + S[22] + s0(sha256d_hash1[14]) + sha256d_hash1[13]; S[30] = s1(S[28]) + S[23] + s0(sha256d_hash1[15]) + sha256d_hash1[14]; S[31] = s1(S[29]) + S[24] + s0(S[16]) + sha256d_hash1[15]; for (i = 32; i < 60; i += 2) { S[i] = s1(S[i - 2]) + S[i - 7] + s0(S[i - 15]) + S[i - 16]; S[i+1] = s1(S[i - 1]) + S[i - 6] + s0(S[i - 14]) + S[i - 15]; } S[60] = s1(S[58]) + S[53] + s0(S[45]) + S[44]; sha256_initx4(hash); RNDr(hash, S, 0); RNDr(hash, S, 1); RNDr(hash, S, 2); RNDr(hash, S, 3); RNDr(hash, S, 4); RNDr(hash, S, 5); RNDr(hash, S, 6); RNDr(hash, S, 7); RNDr(hash, S, 8); RNDr(hash, S, 9); RNDr(hash, S, 10); RNDr(hash, S, 11); RNDr(hash, S, 12); RNDr(hash, S, 13); RNDr(hash, S, 14); RNDr(hash, S, 15); RNDr(hash, S, 16); RNDr(hash, S, 17); RNDr(hash, S, 18); RNDr(hash, S, 19); RNDr(hash, S, 20); RNDr(hash, S, 21); RNDr(hash, S, 22); RNDr(hash, S, 23); RNDr(hash, S, 24); RNDr(hash, S, 25); RNDr(hash, S, 26); RNDr(hash, S, 27); RNDr(hash, S, 28); RNDr(hash, S, 29); RNDr(hash, S, 30); RNDr(hash, S, 31); RNDr(hash, S, 32); RNDr(hash, S, 33); RNDr(hash, S, 34); RNDr(hash, S, 35); RNDr(hash, S, 36); RNDr(hash, S, 37); RNDr(hash, S, 38); RNDr(hash, S, 39); RNDr(hash, S, 40); RNDr(hash, S, 41); RNDr(hash, S, 42); RNDr(hash, S, 43); RNDr(hash, S, 44); RNDr(hash, S, 45); RNDr(hash, S, 46); RNDr(hash, S, 47); RNDr(hash, S, 48); RNDr(hash, S, 49); RNDr(hash, S, 50); RNDr(hash, S, 51); RNDr(hash, S, 52); RNDr(hash, S, 53); RNDr(hash, S, 54); RNDr(hash, S, 55); RNDr(hash, S, 56); hash[2] += hash[6] + S1(hash[3]) + Ch(hash[3], hash[4], hash[5]) + S[57] + sha256_k[57]; hash[1] += hash[5] + S1(hash[2]) + Ch(hash[2], hash[3], hash[4]) + S[58] + sha256_k[58]; hash[0] += hash[4] + S1(hash[1]) + Ch(hash[1], hash[2], hash[3]) + S[59] + sha256_k[59]; hash[7] += hash[3] + S1(hash[0]) + Ch(hash[0], hash[1], hash[2]) + S[60] + sha256_k[60] + sha256_h[7]; } // // Code taken from original scrypt.cpp and vectorized with minimal changes. // static const uint32x4_t keypadx4[12] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 }; static const uint32x4_t innerpadx4[11] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 }; static const uint32x4_t outerpadx4[8] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 }; static const uint32x4_t finalblkx4[16] = { 0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 }; static inline void HMAC_SHA256_80_initx4(const uint32x4_t *key, uint32x4_t *tstate, uint32x4_t *ostate) { uint32x4_t ihash[8]; uint32x4_t pad[16]; int i; /* tstate is assumed to contain the midstate of key */ memcpy(pad, key + 16, 4*16); memcpy(pad + 4, keypadx4, 4*48); sha256_transformx4(tstate, pad, 0); memcpy(ihash, tstate, 4*32); sha256_initx4(ostate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x5c5c5c5c; for (; i < 16; i++) pad[i] = 0x5c5c5c5c; sha256_transformx4(ostate, pad, 0); sha256_initx4(tstate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x36363636; for (; i < 16; i++) pad[i] = 0x36363636; sha256_transformx4(tstate, pad, 0); } static inline void PBKDF2_SHA256_80_128x4(const uint32x4_t *tstate, const uint32x4_t *ostate, const uint32x4_t *salt, uint32x4_t *output) { uint32x4_t istate[8], ostate2[8]; uint32x4_t ibuf[16], obuf[16]; int i, j; memcpy(istate, tstate, 4*32); sha256_transformx4(istate, salt, 0); memcpy(ibuf, salt + 16, 4*16); memcpy(ibuf + 5, innerpadx4, 4*44); memcpy(obuf + 8, outerpadx4, 4*32); for (i = 0; i < 4; i++) { memcpy(obuf, istate, 4*32); ibuf[4] = i + 1; sha256_transformx4(obuf, ibuf, 0); memcpy(ostate2, ostate, 4*32); sha256_transformx4(ostate2, obuf, 0); for (j = 0; j < 8; j++) output[8 * i + j] = swab32x4(ostate2[j]); } } static inline void PBKDF2_SHA256_128_32x4(uint32x4_t *tstate, uint32x4_t *ostate, const uint32x4_t *salt, uint32x4_t *output) { uint32x4_t buf[16]; int i; sha256_transformx4(tstate, salt, 1); sha256_transformx4(tstate, salt + 16, 1); sha256_transformx4(tstate, finalblkx4, 0); memcpy(buf, tstate, 4*32); memcpy(buf + 8, outerpadx4, 4*32); sha256_transformx4(ostate, buf, 0); for (i = 0; i < 8; i++) output[i] = swab32x4(ostate[i]); } // // Original scrypt.cpp HMAC SHA256 functions // static const uint32_t keypad[12] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000280 }; static const uint32_t innerpad[11] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x000004a0 }; static const uint32_t outerpad[8] = { 0x80000000, 0, 0, 0, 0, 0, 0, 0x00000300 }; static const uint32_t finalblk[16] = { 0x00000001, 0x80000000, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x00000620 }; static inline void HMAC_SHA256_80_init(const uint32_t *key, uint32_t *tstate, uint32_t *ostate) { uint32_t ihash[8]; uint32_t pad[16]; int i; /* tstate is assumed to contain the midstate of key */ memcpy(pad, key + 16, 16); memcpy(pad + 4, keypad, 48); sha256_transform(tstate, pad, 0); memcpy(ihash, tstate, 32); sha256_init(ostate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x5c5c5c5c; for (; i < 16; i++) pad[i] = 0x5c5c5c5c; sha256_transform(ostate, pad, 0); sha256_init(tstate); for (i = 0; i < 8; i++) pad[i] = ihash[i] ^ 0x36363636; for (; i < 16; i++) pad[i] = 0x36363636; sha256_transform(tstate, pad, 0); } static inline void PBKDF2_SHA256_80_128(const uint32_t *tstate, const uint32_t *ostate, const uint32_t *salt, uint32_t *output) { uint32_t istate[8], ostate2[8]; uint32_t ibuf[16], obuf[16]; int i, j; memcpy(istate, tstate, 32); sha256_transform(istate, salt, 0); memcpy(ibuf, salt + 16, 16); memcpy(ibuf + 5, innerpad, 44); memcpy(obuf + 8, outerpad, 32); for (i = 0; i < 4; i++) { memcpy(obuf, istate, 32); ibuf[4] = i + 1; sha256_transform(obuf, ibuf, 0); memcpy(ostate2, ostate, 32); sha256_transform(ostate2, obuf, 0); for (j = 0; j < 8; j++) output[8 * i + j] = swab32(ostate2[j]); } } static inline void PBKDF2_SHA256_128_32(uint32_t *tstate, uint32_t *ostate, const uint32_t *salt, uint32_t *output) { uint32_t buf[16]; sha256_transform(tstate, salt, 1); sha256_transform(tstate, salt + 16, 1); sha256_transform(tstate, finalblk, 0); memcpy(buf, tstate, 32); memcpy(buf + 8, outerpad, 32); sha256_transform(ostate, buf, 0); for (int i = 0; i < 8; i++) output[i] = swab32(ostate[i]); } static int lastFactor = 0; static void computeGold(uint32_t* const input, uint32_t *reference, uchar *scratchpad); static bool init[MAX_GPUS] = { 0 }; // cleanup void free_scrypt(int thr_id) { int dev_id = device_map[thr_id]; if (!init[thr_id]) return; // trivial way to free all... cudaSetDevice(dev_id); cudaDeviceSynchronize(); cudaDeviceReset(); init[thr_id] = false; } // Scrypt proof of work algorithm // using SSE2 vectorized HMAC SHA256 on CPU and // a salsa core implementation on GPU with CUDA // int scanhash_scrypt(int thr_id, struct work *work, uint32_t max_nonce, unsigned long *hashes_done, unsigned char *scratchbuf, struct timeval *tv_start, struct timeval *tv_end) { int result = 0; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; static __thread int throughput = 0; if (!init[thr_id]) { int dev_id = device_map[thr_id]; cudaSetDevice(dev_id); cudaDeviceSynchronize(); cudaDeviceReset(); cudaSetDevice(dev_id); throughput = cuda_throughput(thr_id); gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); init[thr_id] = true; } if (throughput == 0) return -1; gettimeofday(tv_start, NULL); uint32_t n = pdata[19]; const uint32_t Htarg = ptarget[7]; // no default set with --cputest if (opt_nfactor == 0) opt_nfactor = 9; uint32_t N = (1UL<<(opt_nfactor+1)); uint32_t *scratch = new uint32_t[N*32]; // scratchbuffer for CPU based validation uint32_t nonce[2]; uint32_t* hash[2] = { cuda_hashbuffer(thr_id,0), cuda_hashbuffer(thr_id,1) }; uint32_t* X[2] = { cuda_transferbuffer(thr_id,0), cuda_transferbuffer(thr_id,1) }; bool sha_on_cpu = (parallel < 2); bool sha_multithreaded = (parallel == 1); uint32x4_t* datax4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 20] : NULL }; uint32x4_t* hashx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; uint32x4_t* tstatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; uint32x4_t* ostatex4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 8] : NULL }; uint32x4_t* Xx4[2] = { sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL, sha_on_cpu ? new uint32x4_t[throughput/4 * 32] : NULL }; // log n-factor if (!opt_quiet && lastFactor != opt_nfactor) { applog(LOG_WARNING, "scrypt factor set to %d (%u)", opt_nfactor, N); lastFactor = opt_nfactor; } uint32_t _ALIGN(64) midstate[8]; sha256_init(midstate); sha256_transform(midstate, pdata, 0); if (sha_on_cpu) { for (int i = 0; i < throughput/4; ++i) { for (int j = 0; j < 20; j++) { datax4[0][20*i+j] = uint32x4_t(pdata[j]); datax4[1][20*i+j] = uint32x4_t(pdata[j]); } } } else prepare_sha256(thr_id, pdata, midstate); int cur = 1, nxt = 0; int iteration = 0; int num_shares = (4*opt_n_threads) || 1; // opt_n_threads can be 0 with --cputest int share_workload = ((((throughput + num_shares-1) / num_shares) + 3) / 4) * 4; do { nonce[nxt] = n; if (sha_on_cpu) { for (int i = 0; i < throughput/4; i++) { datax4[nxt][i * 20 + 19] = uint32x4_t(n+0, n+1, n+2, n+3); n += 4; } if (sha_multithreaded) { #ifdef WIN32 parallel_for (0, num_shares, [&](int share) { for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { for (int l = 0; l < 8; l++) tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); } } ); #else #pragma omp parallel for for (int share = 0; share < num_shares; share++) { for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { for (int l = 0; l < 8; l++) tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); } } #endif } else /* sha_multithreaded */ { for (int k = 0; k < throughput/4; k++) { for (int l = 0; l < 8; l++) tstatex4[nxt][k * 8 + l] = uint32x4_t(midstate[l]); HMAC_SHA256_80_initx4(&datax4[nxt][k * 20], &tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8]); PBKDF2_SHA256_80_128x4(&tstatex4[nxt][k * 8], &ostatex4[nxt][k * 8], &datax4[nxt][k * 20], &Xx4[nxt][k * 32]); } } for (int i = 0; i < throughput/4; i++) { for (int j = 0; j < 32; j++) { uint32x4_t &t = Xx4[nxt][i * 32 + j]; X[nxt][(4*i+0)*32+j] = t[0]; X[nxt][(4*i+1)*32+j] = t[1]; X[nxt][(4*i+2)*32+j] = t[2]; X[nxt][(4*i+3)*32+j] = t[3]; } } cuda_scrypt_serialize(thr_id, nxt); cuda_scrypt_HtoD(thr_id, X[nxt], nxt); cuda_scrypt_core(thr_id, nxt, N); cuda_scrypt_done(thr_id, nxt); cuda_scrypt_DtoH(thr_id, X[nxt], nxt, false); //cuda_scrypt_flush(thr_id, nxt); if(!cuda_scrypt_sync(thr_id, nxt)) { result = -1; break; } for (int i = 0; i < throughput/4; i++) { for (int j = 0; j < 32; j++) { Xx4[cur][i * 32 + j] = uint32x4_t( X[cur][(4*i+0)*32+j], X[cur][(4*i+1)*32+j], X[cur][(4*i+2)*32+j], X[cur][(4*i+3)*32+j] ); } } if (sha_multithreaded) { #ifdef WIN32 parallel_for (0, num_shares, [&](int share) { for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); } } ); #else #pragma omp parallel for for (int share = 0; share < num_shares; share++) { for (int k = (share_workload*share)/4; k < (share_workload*(share+1))/4 && k < throughput/4; k++) { PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); } } #endif } else { for (int k = 0; k < throughput/4; k++) { PBKDF2_SHA256_128_32x4(&tstatex4[cur][k * 8], &ostatex4[cur][k * 8], &Xx4[cur][k * 32], &hashx4[cur][k * 8]); } } for (int i = 0; i < throughput/4; i++) { for (int j = 0; j < 8; j++) { uint32x4_t &t = hashx4[cur][i * 8 + j]; hash[cur][(4*i+0)*8+j] = t[0]; hash[cur][(4*i+1)*8+j] = t[1]; hash[cur][(4*i+2)*8+j] = t[2]; hash[cur][(4*i+3)*8+j] = t[3]; } } } else /* sha_on_cpu */ { n += throughput; cuda_scrypt_serialize(thr_id, nxt); pre_sha256(thr_id, nxt, nonce[nxt], throughput); cuda_scrypt_core(thr_id, nxt, N); // cuda_scrypt_flush(thr_id, nxt); if (!cuda_scrypt_sync(thr_id, nxt)) { printf("error\n"); result = -1; break; } post_sha256(thr_id, nxt, throughput); cuda_scrypt_done(thr_id, nxt); cuda_scrypt_DtoH(thr_id, hash[nxt], nxt, true); // cuda_scrypt_flush(thr_id, nxt); if (!cuda_scrypt_sync(thr_id, nxt)) { printf("error\n"); result = -1; break; } } if (iteration > 0 || opt_n_threads == 0) { for (int i = 0; i < throughput; i++) { if (hash[cur][i * 8 + 7] <= Htarg && fulltest(hash[cur] + i * 8, ptarget)) { // CPU based validation to rule out GPU errors (scalar CPU code) uint32_t _ALIGN(64) inp[32], ref[32], tstate[8], ostate[8], refhash[8], ldata[20]; memcpy(ldata, pdata, 80); ldata[19] = nonce[cur] + i; memcpy(tstate, midstate, 32); HMAC_SHA256_80_init(ldata, tstate, ostate); PBKDF2_SHA256_80_128(tstate, ostate, ldata, inp); computeGold(inp, ref, (uchar*)scratch); bool good = true; if (sha_on_cpu) { if (memcmp(&X[cur][i * 32], ref, 32*sizeof(uint32_t)) != 0) good = false; } else { PBKDF2_SHA256_128_32(tstate, ostate, ref, refhash); if (memcmp(&hash[cur][i * 8], refhash, 32) != 0) good = false; } if (!good) { gpulog(LOG_WARNING, thr_id, "result does not validate on CPU! (i=%d, s=%d)", i, cur); } else { *hashes_done = n - pdata[19]; work_set_target_ratio(work, refhash); pdata[19] = nonce[cur] + i; result = 1; goto byebye; } } } } cur = (cur+1)&1; nxt = (nxt+1)&1; ++iteration; //printf("n=%d, thr=%d, max=%d, rest=%d\n", n, throughput, max_nonce, work_restart[thr_id].restart); } while (n <= max_nonce && !work_restart[thr_id].restart); *hashes_done = n - pdata[19]; pdata[19] = n; byebye: delete[] datax4[0]; delete[] datax4[1]; delete[] hashx4[0]; delete[] hashx4[1]; delete[] tstatex4[0]; delete[] tstatex4[1]; delete[] ostatex4[0]; delete[] ostatex4[1]; delete[] Xx4[0]; delete[] Xx4[1]; delete [] scratch; gettimeofday(tv_end, NULL); return result; } #define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b)))) static void xor_salsa8(uint32_t * const B, const uint32_t * const C) { uint32_t x0 = (B[ 0] ^= C[ 0]), x1 = (B[ 1] ^= C[ 1]), x2 = (B[ 2] ^= C[ 2]), x3 = (B[ 3] ^= C[ 3]); uint32_t x4 = (B[ 4] ^= C[ 4]), x5 = (B[ 5] ^= C[ 5]), x6 = (B[ 6] ^= C[ 6]), x7 = (B[ 7] ^= C[ 7]); uint32_t x8 = (B[ 8] ^= C[ 8]), x9 = (B[ 9] ^= C[ 9]), xa = (B[10] ^= C[10]), xb = (B[11] ^= C[11]); uint32_t xc = (B[12] ^= C[12]), xd = (B[13] ^= C[13]), xe = (B[14] ^= C[14]), xf = (B[15] ^= C[15]); /* Operate on columns. */ x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); /* Operate on rows. */ x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); /* Operate on columns. */ x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); /* Operate on rows. */ x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); /* Operate on columns. */ x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); /* Operate on rows. */ x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); /* Operate on columns. */ x4 ^= ROTL(x0 + xc, 7); x9 ^= ROTL(x5 + x1, 7); xe ^= ROTL(xa + x6, 7); x3 ^= ROTL(xf + xb, 7); x8 ^= ROTL(x4 + x0, 9); xd ^= ROTL(x9 + x5, 9); x2 ^= ROTL(xe + xa, 9); x7 ^= ROTL(x3 + xf, 9); xc ^= ROTL(x8 + x4, 13); x1 ^= ROTL(xd + x9, 13); x6 ^= ROTL(x2 + xe, 13); xb ^= ROTL(x7 + x3, 13); x0 ^= ROTL(xc + x8, 18); x5 ^= ROTL(x1 + xd, 18); xa ^= ROTL(x6 + x2, 18); xf ^= ROTL(xb + x7, 18); /* Operate on rows. */ x1 ^= ROTL(x0 + x3, 7); x6 ^= ROTL(x5 + x4, 7); xb ^= ROTL(xa + x9, 7); xc ^= ROTL(xf + xe, 7); x2 ^= ROTL(x1 + x0, 9); x7 ^= ROTL(x6 + x5, 9); x8 ^= ROTL(xb + xa, 9); xd ^= ROTL(xc + xf, 9); x3 ^= ROTL(x2 + x1, 13); x4 ^= ROTL(x7 + x6, 13); x9 ^= ROTL(x8 + xb, 13); xe ^= ROTL(xd + xc, 13); x0 ^= ROTL(x3 + x2, 18); x5 ^= ROTL(x4 + x7, 18); xa ^= ROTL(x9 + x8, 18); xf ^= ROTL(xe + xd, 18); B[ 0] += x0; B[ 1] += x1; B[ 2] += x2; B[ 3] += x3; B[ 4] += x4; B[ 5] += x5; B[ 6] += x6; B[ 7] += x7; B[ 8] += x8; B[ 9] += x9; B[10] += xa; B[11] += xb; B[12] += xc; B[13] += xd; B[14] += xe; B[15] += xf; } /** * @param X input/ouput * @param V scratch buffer * @param N factor (def. 1024) */ static void scrypt_core(uint32_t *X, uint32_t *V, uint32_t N) { for (uint32_t i = 0; i < N; i++) { memcpy(&V[i * 32], X, 128); xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } for (uint32_t i = 0; i < N; i++) { uint32_t j = 32 * (X[16] & (N - 1)); for (uint8_t k = 0; k < 32; k++) X[k] ^= V[j + k]; xor_salsa8(&X[0], &X[16]); xor_salsa8(&X[16], &X[0]); } } /** * Compute reference data set on the CPU * @param input input data as provided to device * @param reference reference data, computed but preallocated * @param scratchpad scrypt scratchpad **/ static void computeGold(uint32_t* const input, uint32_t *reference, uchar *scratchpad) { uint32_t X[32] = { 0 }; uint32_t *V = (uint32_t*) scratchpad; uint32_t N = (1<<(opt_nfactor+1)); // default 9 = 1024 for (int k = 0; k < 32; k++) X[k] = input[k]; scrypt_core(X, V, N); for (int k = 0; k < 32; k++) reference[k] = X[k]; } /* cputest */ void scrypthash(void* output, const void* input) { uint32_t _ALIGN(64) X[32], ref[32] = { 0 }, tstate[8], ostate[8], midstate[8]; uint32_t _ALIGN(64) data[20]; uchar *scratchbuf; // no default set with --cputest if (opt_nfactor == 0) opt_nfactor = 9; scratchbuf = (uchar*) calloc(4 * 128 + 63, 1UL << (opt_nfactor+1)); memcpy(data, input, 80); sha256_init(midstate); sha256_transform(midstate, data, 0); /* ok */ memcpy(tstate, midstate, 32); HMAC_SHA256_80_init(data, tstate, ostate); PBKDF2_SHA256_80_128(tstate, ostate, data, X); /* ok */ if (scratchbuf) { computeGold(X, ref, scratchbuf); PBKDF2_SHA256_128_32(tstate, ostate, ref, (uint32_t*) output); } else { memset(output, 0, 32); } free(scratchbuf); }