/** * Blake-256 Cuda Kernel (Tested on SM 5/5.2) * * Tanguy Pruvot / SP - Jan 2016 */ #include #include #include "miner.h" extern "C" { #include "sph/sph_blake.h" } /* threads per block */ #define TPB 512 /* hash by cpu with blake 256 */ extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14) { uchar hash[64]; sph_blake256_context ctx; sph_blake256_set_rounds(rounds); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 80); sph_blake256_close(&ctx, hash); memcpy(output, hash, 32); } #include "cuda_helper.h" #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #endif __constant__ uint32_t _ALIGN(32) d_data[12]; /* 8 adapters max */ static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; /* max count of found nonces in one call */ #define NBN 2 static __thread uint32_t extra_results[NBN] = { UINT32_MAX }; #define GSPREC(a,b,c,d,x,y) { \ v[a] += (m[x] ^ c_u256[y]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \ v[a] += (m[y] ^ c_u256[x]) + v[b]; \ v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \ v[c] += v[d]; \ v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \ } __device__ __forceinline__ void blake256_compress_14(uint32_t *h, const uint32_t *block, const uint32_t T0) { uint32_t /*_ALIGN(8)*/ m[16]; uint32_t v[16]; m[0] = block[0]; m[1] = block[1]; m[2] = block[2]; m[3] = block[3]; const uint32_t c_u256[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; const uint32_t c_Padding[12] = { 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; #pragma unroll for (uint32_t i = 0; i < 12; i++) { m[i+4] = c_Padding[i]; } //#pragma unroll 8 for(uint32_t i = 0; i < 8; i++) v[i] = h[i]; v[ 8] = c_u256[0]; v[ 9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ T0; v[13] = c_u256[5] ^ T0; v[14] = c_u256[6]; v[15] = c_u256[7]; // { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, GSPREC(0, 4, 0x8, 0xC,0,1); GSPREC(1, 5, 0x9, 0xD,2,3); GSPREC(2, 6, 0xA, 0xE, 4,5); GSPREC(3, 7, 0xB, 0xF, 6,7); GSPREC(0, 5, 0xA, 0xF, 8,9); GSPREC(1, 6, 0xB, 0xC, 10,11); GSPREC(2, 7, 0x8, 0xD, 12,13); GSPREC(3, 4, 0x9, 0xE, 14,15); // { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, GSPREC(0, 4, 0x8, 0xC, 14, 10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15, 13); GSPREC(0, 5, 0xA, 0xF, 10, 14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); // { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13, 12); GSPREC(3, 7, 0xB, 0xF, 11, 14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(2, 7, 0x8, 0xD, 4, 0); GSPREC(3, 4, 0x9, 0xE, 15, 8); // { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, GSPREC(0, 4, 0x8, 0xC, 9, 0); GSPREC(1, 5, 0x9, 0xD, 5, 7); GSPREC(2, 6, 0xA, 0xE, 2, 4); GSPREC(3, 7, 0xB, 0xF, 10, 15); GSPREC(0, 5, 0xA, 0xF, 14, 1); GSPREC(1, 6, 0xB, 0xC, 11, 12); GSPREC(2, 7, 0x8, 0xD, 6, 8); GSPREC(3, 4, 0x9, 0xE, 3, 13); // { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, GSPREC(0, 4, 0x8, 0xC, 2, 12); GSPREC(1, 5, 0x9, 0xD, 6, 10); GSPREC(2, 6, 0xA, 0xE, 0, 11); GSPREC(3, 7, 0xB, 0xF, 8, 3); GSPREC(0, 5, 0xA, 0xF, 4, 13); GSPREC(1, 6, 0xB, 0xC, 7, 5); GSPREC(2, 7, 0x8, 0xD, 15, 14); GSPREC(3, 4, 0x9, 0xE, 1, 9); // { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, GSPREC(0, 4, 0x8, 0xC, 12, 5); GSPREC(1, 5, 0x9, 0xD, 1, 15); GSPREC(2, 6, 0xA, 0xE, 14, 13); GSPREC(3, 7, 0xB, 0xF, 4, 10); GSPREC(0, 5, 0xA, 0xF, 0, 7); GSPREC(1, 6, 0xB, 0xC, 6, 3); GSPREC(2, 7, 0x8, 0xD, 9, 2); GSPREC(3, 4, 0x9, 0xE, 8, 11); // { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, GSPREC(0, 4, 0x8, 0xC, 13, 11); GSPREC(1, 5, 0x9, 0xD, 7, 14); GSPREC(2, 6, 0xA, 0xE, 12, 1); GSPREC(3, 7, 0xB, 0xF, 3, 9); GSPREC(0, 5, 0xA, 0xF, 5, 0); GSPREC(1, 6, 0xB, 0xC, 15, 4); GSPREC(2, 7, 0x8, 0xD, 8, 6); GSPREC(3, 4, 0x9, 0xE, 2, 10); // { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, GSPREC(0, 4, 0x8, 0xC, 6, 15); GSPREC(1, 5, 0x9, 0xD, 14, 9); GSPREC(2, 6, 0xA, 0xE, 11, 3); GSPREC(3, 7, 0xB, 0xF, 0, 8); GSPREC(0, 5, 0xA, 0xF, 12, 2); GSPREC(1, 6, 0xB, 0xC, 13, 7); GSPREC(2, 7, 0x8, 0xD, 1, 4); GSPREC(3, 4, 0x9, 0xE, 10, 5); // { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 }, GSPREC(0, 4, 0x8, 0xC, 10, 2); GSPREC(1, 5, 0x9, 0xD, 8, 4); GSPREC(2, 6, 0xA, 0xE, 7, 6); GSPREC(3, 7, 0xB, 0xF, 1, 5); GSPREC(0, 5, 0xA, 0xF, 15, 11); GSPREC(1, 6, 0xB, 0xC, 9, 14); GSPREC(2, 7, 0x8, 0xD, 3, 12); GSPREC(3, 4, 0x9, 0xE, 13, 0); // { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10, 11); GSPREC(2, 7, 0x8, 0xD, 12, 13); GSPREC(3, 4, 0x9, 0xE, 14, 15); // { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, GSPREC(0, 4, 0x8, 0xC, 14, 10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15, 13); GSPREC(0, 5, 0xA, 0xF, 10, 14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); // { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13, 12); GSPREC(3, 7, 0xB, 0xF, 11, 14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(2, 7, 0x8, 0xD, 4, 0); GSPREC(3, 4, 0x9, 0xE, 15, 8); // only compute h6 & 7 h[6U] ^= v[6U] ^ v[14U]; h[7U] ^= v[7U] ^ v[15U]; } /* ############################################################################################################################### */ /* Precalculated 1st 64-bytes block (midstate) method */ __global__ __launch_bounds__(1024,1) void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { const uint32_t nonce = startNonce + thread; uint32_t _ALIGN(16) h[8]; #pragma unroll for(int i=0; i < 8; i++) { h[i] = d_data[i]; } // ------ Close: Bytes 64 to 80 ------ uint32_t _ALIGN(16) ending[4]; ending[0] = d_data[8]; ending[1] = d_data[9]; ending[2] = d_data[10]; ending[3] = nonce; /* our tested value */ blake256_compress_14(h, ending, 640); if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) { #if NBN == 2 if (resNonce[0] != UINT32_MAX) resNonce[1] = nonce; else resNonce[0] = nonce; #else resNonce[0] = nonce; #endif } } } __global__ #if __CUDA_ARCH__ >= 500 __launch_bounds__(512, 3) /* 40 regs */ #endif void blake256_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget) { uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t h[8]; const uint32_t nonce = startNonce + thread; #pragma unroll for (int i = 0; i < 8; i++) { h[i] = d_data[i]; } // ------ Close: Bytes 64 to 80 ------ uint32_t m[16] = { d_data[8], d_data[9], d_data[10], nonce, 0x80000000UL, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 640, }; const uint32_t c_u256[16] = { 0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, 0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 }; uint32_t v[16]; #pragma unroll for (uint32_t i = 0; i < 8; i++) v[i] = h[i]; v[8] = c_u256[0]; v[9] = c_u256[1]; v[10] = c_u256[2]; v[11] = c_u256[3]; v[12] = c_u256[4] ^ 640U; v[13] = c_u256[5] ^ 640U; v[14] = c_u256[6]; v[15] = c_u256[7]; // { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, GSPREC(0, 4, 0x8, 0xC, 0, 1); GSPREC(1, 5, 0x9, 0xD, 2, 3); GSPREC(2, 6, 0xA, 0xE, 4, 5); GSPREC(3, 7, 0xB, 0xF, 6, 7); GSPREC(0, 5, 0xA, 0xF, 8, 9); GSPREC(1, 6, 0xB, 0xC, 10, 11); GSPREC(2, 7, 0x8, 0xD, 12, 13); GSPREC(3, 4, 0x9, 0xE, 14, 15); // { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, GSPREC(0, 4, 0x8, 0xC, 14, 10); GSPREC(1, 5, 0x9, 0xD, 4, 8); GSPREC(2, 6, 0xA, 0xE, 9, 15); GSPREC(3, 7, 0xB, 0xF, 13, 6); GSPREC(0, 5, 0xA, 0xF, 1, 12); GSPREC(1, 6, 0xB, 0xC, 0, 2); GSPREC(2, 7, 0x8, 0xD, 11, 7); GSPREC(3, 4, 0x9, 0xE, 5, 3); // { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, GSPREC(0, 4, 0x8, 0xC, 11, 8); GSPREC(1, 5, 0x9, 0xD, 12, 0); GSPREC(2, 6, 0xA, 0xE, 5, 2); GSPREC(3, 7, 0xB, 0xF, 15, 13); GSPREC(0, 5, 0xA, 0xF, 10, 14); GSPREC(1, 6, 0xB, 0xC, 3, 6); GSPREC(2, 7, 0x8, 0xD, 7, 1); GSPREC(3, 4, 0x9, 0xE, 9, 4); // { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, GSPREC(0, 4, 0x8, 0xC, 7, 9); GSPREC(1, 5, 0x9, 0xD, 3, 1); GSPREC(2, 6, 0xA, 0xE, 13, 12); GSPREC(3, 7, 0xB, 0xF, 11, 14); GSPREC(0, 5, 0xA, 0xF, 2, 6); GSPREC(1, 6, 0xB, 0xC, 5, 10); GSPREC(2, 7, 0x8, 0xD, 4, 0); GSPREC(3, 4, 0x9, 0xE, 15, 8); // { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, GSPREC(0, 4, 0x8, 0xC, 9, 0); GSPREC(1, 5, 0x9, 0xD, 5, 7); GSPREC(2, 6, 0xA, 0xE, 2, 4); GSPREC(3, 7, 0xB, 0xF, 10, 15); GSPREC(0, 5, 0xA, 0xF, 14, 1); GSPREC(1, 6, 0xB, 0xC, 11, 12); GSPREC(2, 7, 0x8, 0xD, 6, 8); GSPREC(3, 4, 0x9, 0xE, 3, 13); // { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, GSPREC(0, 4, 0x8, 0xC, 2, 12); GSPREC(1, 5, 0x9, 0xD, 6, 10); GSPREC(2, 6, 0xA, 0xE, 0, 11); GSPREC(3, 7, 0xB, 0xF, 8, 3); GSPREC(0, 5, 0xA, 0xF, 4, 13); GSPREC(1, 6, 0xB, 0xC, 7, 5); GSPREC(2, 7, 0x8, 0xD, 15, 14); GSPREC(3, 4, 0x9, 0xE, 1, 9); // { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, GSPREC(0, 4, 0x8, 0xC, 12, 5); GSPREC(1, 5, 0x9, 0xD, 1, 15); GSPREC(2, 6, 0xA, 0xE, 14, 13); GSPREC(3, 7, 0xB, 0xF, 4, 10); GSPREC(0, 5, 0xA, 0xF, 0, 7); GSPREC(1, 6, 0xB, 0xC, 6, 3); GSPREC(2, 7, 0x8, 0xD, 9, 2); GSPREC(3, 4, 0x9, 0xE, 8, 11); // { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, GSPREC(0, 4, 0x8, 0xC, 13, 11); GSPREC(1, 5, 0x9, 0xD, 7, 14); GSPREC(2, 6, 0xA, 0xE, 12, 1); GSPREC(3, 7, 0xB, 0xF, 3, 9); GSPREC(0, 5, 0xA, 0xF, 5, 0); GSPREC(1, 6, 0xB, 0xC, 15, 4); GSPREC(2, 7, 0x8, 0xD, 8, 6); //GSPREC(3, 4, 0x9, 0xE, 2, 10); // { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, // only compute h6 & 7 //h[6] ^= v[6] ^ v[14]; //h[7] ^= v[7] ^ v[15]; if ((h[7]^v[7]^v[15]) == 0) // h7 { GSPREC(3, 4, 0x9, 0xE, 2, 10); if (cuda_swab32(h[6]^v[6]^v[14]) <= highTarget) { #if NBN == 2 if (resNonce[0] != UINT32_MAX) resNonce[1] = nonce; else resNonce[0] = nonce; #else resNonce[0] = nonce; #endif } } } } __host__ static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget, const int8_t rounds) { uint32_t result = UINT32_MAX; dim3 grid((threads + TPB-1)/TPB); dim3 block(TPB); /* Check error on Ctrl+C or kill to prevent segfaults on exit */ if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess) return result; if (rounds == 8) blake256_gpu_hash_16_8 <<>> (threads, startNonce, d_resNonce[thr_id], highTarget); else blake256_gpu_hash_16 <<>> (threads, startNonce, d_resNonce[thr_id], highTarget); if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) { result = h_resNonce[thr_id][0]; for (int n=0; n < (NBN-1); n++) extra_results[n] = h_resNonce[thr_id][n+1]; } return result; } __host__ static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14) { sph_blake256_context ctx; sph_blake256_set_rounds(rounds); sph_blake256_init(&ctx); sph_blake256(&ctx, input, 64); memcpy(output, (void*)ctx.H, 32); } __host__ void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget) { uint32_t _ALIGN(64) data[11]; memcpy(data, midstate, 32); data[8] = penddata[0]; data[9] = penddata[1]; data[10]= penddata[2]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice)); } static bool init[MAX_GPUS] = { 0 }; extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14) { uint32_t _ALIGN(64) endiandata[20]; uint32_t _ALIGN(64) midstate[8]; uint32_t *pdata = work->data; uint32_t *ptarget = work->target; const uint32_t first_nonce = pdata[19]; uint64_t targetHigh = ((uint64_t*)ptarget)[3]; int dev_id = device_map[thr_id]; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 26; if (device_sm[dev_id] < 350) intensity = 22; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); int rc = 0; if (opt_benchmark) { targetHigh = 0x1ULL << 32; ptarget[6] = swab32(0xff); } if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); cudaDeviceSetCacheConfig(cudaFuncCachePreferL1); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1); init[thr_id] = true; } for (int k = 0; k < 16; k++) be32enc(&endiandata[k], pdata[k]); blake256mid(midstate, endiandata, blakerounds); blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget); do { // GPU HASH (second block only, first is midstate) work->nonces[0] = blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds); *hashes_done = pdata[19] - first_nonce + throughput; if (work->nonces[0] != UINT32_MAX) { uint32_t _ALIGN(64) vhashcpu[8]; const uint32_t Htarg = ptarget[6]; for (int k=16; k < 19; k++) be32enc(&endiandata[k], pdata[k]); be32enc(&endiandata[19], work->nonces[0]); blake256hash(vhashcpu, endiandata, blakerounds); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { work->valid_nonces = 1; work_set_target_ratio(work, vhashcpu); #if NBN > 1 if (extra_results[0] != UINT32_MAX) { work->nonces[1] = extra_results[0]; be32enc(&endiandata[19], work->nonces[1]); blake256hash(vhashcpu, endiandata, blakerounds); if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) { if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) { work_set_target_ratio(work, vhashcpu); xchg(work->nonces[0], work->nonces[1]); } else { bn_set_target_ratio(work, vhashcpu, 1); } work->valid_nonces = 2; } pdata[19] = max(work->nonces[0], work->nonces[1]) + 1; extra_results[0] = UINT32_MAX; } else { pdata[19] = work->nonces[0] + 1; // cursor } #endif return work->valid_nonces; } else if (vhashcpu[6] > Htarg) { gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]); pdata[19] = work->nonces[0] + 1; continue; } } pdata[19] += throughput; } while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + pdata[19]); *hashes_done = pdata[19] - first_nonce; MyStreamSynchronize(NULL, 0, device_map[thr_id]); return rc; } // cleanup extern "C" void free_blake256(int thr_id) { if (!init[thr_id]) return; cudaDeviceSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }