/** * Based on the SPH implementation of blake2s * Provos Alexis - 2016 */ #include "miner.h" #include #include #include "sph/blake2s.h" #include "sph/sph_types.h" #ifdef __INTELLISENSE__ #define __byte_perm(x, y, b) x #endif #include "cuda_helper.h" #ifdef __CUDA_ARCH__ __device__ __forceinline__ uint32_t ROR8(const uint32_t a) { return __byte_perm(a, 0, 0x0321); } __device__ __forceinline__ uint32_t ROL16(const uint32_t a) { return __byte_perm(a, 0, 0x1032); } #else #define ROR8(u) (u >> 8) #define ROL16(u) (u << 16) #endif __device__ __forceinline__ uint32_t xor3x(uint32_t a, uint32_t b, uint32_t c) { uint32_t result; #if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050 asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result) : "r"(a), "r"(b),"r"(c)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA #else result = a^b^c; #endif return result; } static const uint32_t blake2s_IV[8] = { 0x6A09E667UL, 0xBB67AE85UL, 0x3C6EF372UL, 0xA54FF53AUL, 0x510E527FUL, 0x9B05688CUL, 0x1F83D9ABUL, 0x5BE0CD19UL }; static const uint8_t blake2s_sigma[10][16] = { { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, }; #define G(r,i,a,b,c,d) \ do { \ a = a + b + m[blake2s_sigma[r][2*i+0]]; \ d = SPH_ROTR32(d ^ a, 16); \ c = c + d; \ b = SPH_ROTR32(b ^ c, 12); \ a = a + b + m[blake2s_sigma[r][2*i+1]]; \ d = SPH_ROTR32(d ^ a, 8); \ c = c + d; \ b = SPH_ROTR32(b ^ c, 7); \ } while(0) #define ROUND(r) \ do { \ G(r,0,v[0],v[4],v[ 8],v[12]); \ G(r,1,v[1],v[5],v[ 9],v[13]); \ G(r,2,v[2],v[6],v[10],v[14]); \ G(r,3,v[3],v[7],v[11],v[15]); \ G(r,4,v[0],v[5],v[10],v[15]); \ G(r,5,v[1],v[6],v[11],v[12]); \ G(r,6,v[2],v[7],v[ 8],v[13]); \ G(r,7,v[3],v[4],v[ 9],v[14]); \ } while(0) extern "C" void blake2s_hash(void *output, const void *input) { uint32_t m[16]; uint32_t v[16]; uint32_t h[8]; uint32_t *in = (uint32_t*)input; // COMPRESS for(int i = 0; i < 16; ++i ) m[i] = in[i]; h[0] = 0x01010020 ^ blake2s_IV[0]; h[1] = blake2s_IV[1]; h[2] = blake2s_IV[2]; h[3] = blake2s_IV[3]; h[4] = blake2s_IV[4]; h[5] = blake2s_IV[5]; h[6] = blake2s_IV[6]; h[7] = blake2s_IV[7]; for(int i = 0; i < 8; ++i ) v[i] = h[i]; v[ 8] = blake2s_IV[0]; v[ 9] = blake2s_IV[1]; v[10] = blake2s_IV[2]; v[11] = blake2s_IV[3]; v[12] = 64 ^ blake2s_IV[4]; v[13] = blake2s_IV[5]; v[14] = blake2s_IV[6]; v[15] = blake2s_IV[7]; ROUND( 0 ); ROUND( 1 ); ROUND( 2 ); ROUND( 3 ); ROUND( 4 ); ROUND( 5 ); ROUND( 6 ); ROUND( 7 ); ROUND( 8 ); ROUND( 9 ); for(size_t i = 0; i < 8; ++i) h[i] ^= v[i] ^ v[i + 8]; // COMPRESS m[0] = in[16]; m[1] = in[17]; m[2] = in[18]; m[3] = in[19]; for(size_t i = 4; i < 16; ++i) m[i] = 0; for(size_t i = 0; i < 8; ++i) v[i] = h[i]; v[ 8] = blake2s_IV[0]; v[ 9] = blake2s_IV[1]; v[10] = blake2s_IV[2]; v[11] = blake2s_IV[3]; v[12] = 0x50 ^ blake2s_IV[4]; v[13] = blake2s_IV[5]; v[14] = ~blake2s_IV[6]; v[15] = blake2s_IV[7]; ROUND( 0 ); ROUND( 1 ); ROUND( 2 ); ROUND( 3 ); ROUND( 4 ); ROUND( 5 ); ROUND( 6 ); ROUND( 7 ); ROUND( 8 ); ROUND( 9 ); for(size_t i = 0; i < 8; ++i) h[i] ^= v[i] ^ v[i + 8]; memcpy(output, h, 32); } #define TPB 1024 #define NPT 256 #define maxResults 16 #define NBN 1 __constant__ uint32_t _ALIGN(32) midstate[20]; static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS]; #define GS4(a,b,c,d,e,f,a1,b1,c1,d1,e1,f1,a2,b2,c2,d2,e2,f2,a3,b3,c3,d3,e3,f3){ \ a += b + e; a1+= b1 + e1; a2+= b2 + e2; a3+= b3 + e3; \ d = ROL16( d ^ a); d1 = ROL16(d1 ^ a1); d2 = ROL16(d2 ^ a2); d3 = ROL16(d3 ^ a3); \ c +=d; c1+=d1; c2+=d2; c3+=d3;\ b = ROTR32(b ^ c, 12); b1 = ROTR32(b1^c1, 12); b2 = ROTR32(b2^c2, 12); b3 = ROTR32(b3^c3, 12); \ a += b + f; a1+= b1 + f1; a2+= b2 + f2; a3+= b3 + f3; \ d = ROR8(d ^ a); d1 = ROR8(d1^a1); d2 = ROR8(d2^a2); d3 = ROR8(d3^a3); \ c += d; c1 += d1; c2 += d2; c3 += d3;\ b = ROTR32(b ^ c, 7); b1 = ROTR32(b1^c1, 7); b2 = ROTR32(b2^c2, 7); b3 = ROTR32(b3^c3, 7); \ } __global__ __launch_bounds__(TPB,1) void blake2s_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t ptarget7) { const uint32_t step = gridDim.x * blockDim.x; uint32_t m[ 3]; uint32_t v[16]; m[0] = midstate[16]; m[1] = midstate[17]; m[2] = midstate[18]; const uint32_t h7 = midstate[19]; for(uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x ; thread data; uint32_t *ptarget = work->target; uint32_t *resNonces; const uint32_t first_nonce = pdata[19]; const int dev_id = device_map[thr_id]; int rc = 0; int intensity = is_windows() ? 25 : 28; uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB)); const dim3 block(TPB); if (!init[thr_id]) { cudaSetDevice(dev_id); if (opt_cudaschedule == -1 && gpu_threads == 1) { cudaDeviceReset(); // reduce cpu usage (linux) cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync); CUDA_LOG_ERROR(); } gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput); cuda_get_arch(thr_id); CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], maxResults * sizeof(uint32_t)), -1); CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], maxResults * sizeof(uint32_t)), -1); init[thr_id] = true; } resNonces = h_resNonce[thr_id]; for (int i=0; i < 19; i++) { be32enc(&endiandata[i], pdata[i]); } blake2s_setBlock(endiandata,ptarget[7]); cudaMemset(d_resNonce[thr_id], 0x00, maxResults*sizeof(uint32_t)); do { if(ptarget[7]) { blake2s_gpu_hash_nonce<<>>(throughput,pdata[19],d_resNonce[thr_id],ptarget[7]); } else { blake2s_gpu_hash_nonce<<>>(throughput,pdata[19],d_resNonce[thr_id]); } cudaMemcpy(resNonces, d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); if(resNonces[0]) { cudaMemcpy(resNonces, d_resNonce[thr_id], maxResults*sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t)); if(resNonces[0] >= maxResults) { gpulog(LOG_WARNING, thr_id, "candidates flood: %u", resNonces[0]); resNonces[0] = maxResults-1; } uint32_t vhashcpu[8]; uint32_t nonce = sph_bswap32(resNonces[1]); be32enc(&endiandata[19], nonce); blake2s_hash(vhashcpu, endiandata); *hashes_done = pdata[19] - first_nonce + throughput; if(vhashcpu[6] <= ptarget[6] && fulltest(vhashcpu, ptarget)) { work_set_target_ratio(work, vhashcpu); work->nonces[0] = nonce; rc = work->valid_nonces = 1; // search for 2nd best nonce for(uint32_t j=2; j <= resNonces[0]; j++) { nonce = sph_bswap32(resNonces[j]); be32enc(&endiandata[19], nonce); blake2s_hash(vhashcpu, endiandata); if(vhashcpu[6] <= ptarget[6] && fulltest(vhashcpu, ptarget)) { gpulog(LOG_DEBUG, thr_id, "Multiple nonces: 1/%08x - %u/%08x", work->nonces[0], j, nonce); work->nonces[1] = nonce; if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) { work->shareratio[1] = work->shareratio[0]; work->sharediff[1] = work->sharediff[0]; xchg(work->nonces[1], work->nonces[0]); work_set_target_ratio(work, vhashcpu); } else if (work->valid_nonces == 1) { bn_set_target_ratio(work, vhashcpu, 1); } work->valid_nonces++; rc = 2; break; } } pdata[19] = max(work->nonces[0], work->nonces[1]); // next scan start return rc; } else if (vhashcpu[6] > ptarget[6]) { gpu_increment_reject(thr_id); if (!opt_quiet) gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", resNonces[0]); } } pdata[19] += throughput; } while (!work_restart[thr_id].restart && (uint64_t)max_nonce > (uint64_t)throughput + pdata[19]); *hashes_done = pdata[19] - first_nonce; return rc; } // cleanup extern "C" void free_blake2s(int thr_id) { if (!init[thr_id]) return; cudaDeviceSynchronize(); cudaFreeHost(h_resNonce[thr_id]); cudaFree(d_resNonce[thr_id]); init[thr_id] = false; cudaDeviceSynchronize(); }