#include #include #include "miner.h" #include "cuda_helper.h" #define USE_SHARED 1 // globaler Speicher für alle HeftyHashes aller Threads uint32_t *heavy_heftyHashes[MAX_GPUS]; /* Hash-Tabellen */ __constant__ uint32_t hefty_gpu_constantTable[64]; #if USE_SHARED #define heftyLookUp(x) (*((uint32_t*)heftytab + (x))) #else #define heftyLookUp(x) hefty_gpu_constantTable[x] #endif // muss expandiert werden __constant__ uint32_t hefty_gpu_blockHeader[16]; // 2x512 Bit Message __constant__ uint32_t hefty_gpu_register[8]; __constant__ uint32_t hefty_gpu_sponge[4]; uint32_t hefty_cpu_hashTable[] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; uint32_t hefty_cpu_constantTable[] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; #if 0 #define S(x, n) (((x) >> (n)) | ((x) << (32 - (n)))) #else __host__ __device__ static uint32_t S(uint32_t x, int n) { return (((x) >> (n)) | ((x) << (32 - (n)))); } #endif #define R(x, n) ((x) >> (n)) #define Ch(x, y, z) ((x & (y ^ z)) ^ z) #define Maj(x, y, z) ((x & (y | z)) | (y & z)) #define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22)) #define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25)) #define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3)) #define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10)) #define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) // uint8_t #define smoosh4(x) ( ((x)>>4) ^ ((x) & 0x0F) ) __host__ __forceinline__ __device__ uint8_t smoosh2(uint32_t x) { uint16_t w = (x >> 16) ^ (x & 0xffff); uint8_t n = smoosh4( (uint8_t)( (w >> 8) ^ (w & 0xFF) ) ); return 24 - (((n >> 2) ^ (n & 0x03)) << 3); } // 4 auf einmal #define smoosh4Quad(x) ( (((x)>>4) ^ (x)) & 0x0F0F0F0F ) #define getByte(x,y) ( ((x) >> (y)) & 0xFF ) __host__ __forceinline__ __device__ void Mangle(uint32_t *inp) { uint32_t r = smoosh4Quad(inp[0]); uint32_t inp0org; uint32_t tmp0Mask, tmp1Mask; uint32_t in1, in2, isAddition; int32_t tmp; uint8_t b; inp[1] = inp[1] ^ S(inp[0], getByte(r, 24)); r += 0x01010101; tmp = smoosh2(inp[1]); b = getByte(r,tmp); inp0org = S(inp[0], b); tmp0Mask = (uint32_t) -((tmp >> 3) & 1); // Bit 3 an Position 0 tmp1Mask = (uint32_t) -((tmp >> 4) & 1); // Bit 4 an Position 0 in1 = (inp[2] & ~inp0org) | (tmp1Mask & ~inp[2] & inp0org) | (~tmp0Mask & ~inp[2] & inp0org); in2 = inp[2] += ~inp0org; isAddition = ~tmp0Mask & tmp1Mask; inp[2] = isAddition ? in2 : in1; r += 0x01010101; tmp = smoosh2(inp[1] ^ inp[2]); b = getByte(r,tmp); inp0org = S(inp[0], b); tmp0Mask = (uint32_t) -((tmp >> 3) & 1); // Bit 3 an Position 0 tmp1Mask = (uint32_t) -((tmp >> 4) & 1); // Bit 4 an Position 0 in1 = (inp[3] & ~inp0org) | (tmp1Mask & ~inp[3] & inp0org) | (~tmp0Mask & ~inp[3] & inp0org); in2 = inp[3] += ~inp0org; isAddition = ~tmp0Mask & tmp1Mask; inp[3] = isAddition ? in2 : in1; inp[0] ^= (inp[1] ^ inp[2]) + inp[3]; } __host__ __forceinline__ __device__ void Absorb(uint32_t *inp, uint32_t x) { inp[0] ^= x; Mangle(inp); } __host__ __forceinline__ __device__ uint32_t Squeeze(uint32_t *inp) { uint32_t y = inp[0]; Mangle(inp); return y; } __host__ __forceinline__ __device__ uint32_t Br(uint32_t *sponge, uint32_t x) { uint32_t r = Squeeze(sponge); uint32_t t = ((r >> 8) & 0x1F); uint32_t y = 1 << t; uint32_t a = (((r>>1) & 0x01) << t) & y; uint32_t b = ((r & 0x01) << t) & y; uint32_t c = x & y; uint32_t retVal = (x & ~y) | (~b & c) | (a & ~c); return retVal; } __device__ __forceinline__ void hefty_gpu_round(uint32_t *regs, uint32_t W, uint32_t K, uint32_t *sponge) { uint32_t tmpBr; uint32_t brG = Br(sponge, regs[6]); uint32_t brF = Br(sponge, regs[5]); uint32_t tmp1 = Ch(regs[4], brF, brG) + regs[7] + W + K; uint32_t brE = Br(sponge, regs[4]); uint32_t tmp2 = tmp1 + S1(brE); uint32_t brC = Br(sponge, regs[2]); uint32_t brB = Br(sponge, regs[1]); uint32_t brA = Br(sponge, regs[0]); uint32_t tmp3 = Maj(brA, brB, brC); tmpBr = Br(sponge, regs[0]); uint32_t tmp4 = tmp3 + S0(tmpBr); tmpBr = Br(sponge, tmp2); #pragma unroll 7 for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = tmp2 + tmp4; regs[4] += tmpBr; } __host__ void hefty_cpu_round(uint32_t *regs, uint32_t W, uint32_t K, uint32_t *sponge) { uint32_t tmpBr; uint32_t brG = Br(sponge, regs[6]); uint32_t brF = Br(sponge, regs[5]); uint32_t tmp1 = Ch(regs[4], brF, brG) + regs[7] + W + K; uint32_t brE = Br(sponge, regs[4]); uint32_t tmp2 = tmp1 + S1(brE); uint32_t brC = Br(sponge, regs[2]); uint32_t brB = Br(sponge, regs[1]); uint32_t brA = Br(sponge, regs[0]); uint32_t tmp3 = Maj(brA, brB, brC); tmpBr = Br(sponge, regs[0]); uint32_t tmp4 = tmp3 + S0(tmpBr); tmpBr = Br(sponge, tmp2); for (int k=6; k >= 0; k--) regs[k+1] = regs[k]; regs[0] = tmp2 + tmp4; regs[4] += tmpBr; } __global__ void hefty_gpu_hash(uint32_t threads, uint32_t startNounce, uint32_t *outputHash) { #if USE_SHARED extern __shared__ unsigned char heftytab[]; if(threadIdx.x < 64) { *((uint32_t*)heftytab + threadIdx.x) = hefty_gpu_constantTable[threadIdx.x]; } __syncthreads(); #endif uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { // bestimme den aktuellen Zähler uint32_t nounce = startNounce + thread; // jeder thread in diesem Block bekommt sein eigenes W Array im Shared memory // reduktion von 256 byte auf 128 byte uint32_t W1[16]; uint32_t W2[16]; // Initialisiere die register a bis h mit der Hash-Tabelle uint32_t regs[8]; uint32_t hash[8]; uint32_t sponge[4]; #pragma unroll 4 for(int k=0; k < 4; k++) sponge[k] = hefty_gpu_sponge[k]; // pre #pragma unroll 8 for (int k=0; k < 8; k++) { regs[k] = hefty_gpu_register[k]; hash[k] = regs[k]; } //memcpy(W, &hefty_gpu_blockHeader[0], sizeof(uint32_t) * 16); // verbleibende 20 bytes aus Block 2 plus padding #pragma unroll 16 for(int k=0;k<16;k++) W1[k] = hefty_gpu_blockHeader[k]; W1[3] = SWAB32(nounce); // 2. Runde #pragma unroll 16 for(int j=0;j<16;j++) Absorb(sponge, W1[j] ^ heftyLookUp(j)); // Progress W1 (Bytes 0...63) #pragma unroll 16 for(int j=0;j<16;j++) { Absorb(sponge, regs[3] ^ regs[7]); hefty_gpu_round(regs, W1[j], heftyLookUp(j), sponge); } // Progress W2 (Bytes 64...127) then W3 (Bytes 128...191) ... for(int k=0;k<3;k++) { for(int j=0;j<2;j++) W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j]; for(int j=2;j<7;j++) W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j]; for(int j=7;j<15;j++) W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j]; W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15]; for(int j=0;j<16;j++) { Absorb(sponge, regs[3] + regs[7]); hefty_gpu_round(regs, W2[j], heftyLookUp(j + ((k+1)<<4)), sponge); } for(int j=0;j<16;j++) W1[j] = W2[j]; } #pragma unroll 8 for(int k=0;k<8;k++) hash[k] += regs[k]; #pragma unroll 8 for(int k=0;k<8;k++) ((uint32_t*)outputHash)[(thread<<3)+k] = SWAB32(hash[k]); } } __host__ void hefty_cpu_init(int thr_id, uint32_t threads) { cudaSetDevice(device_map[thr_id]); // Kopiere die Hash-Tabellen in den GPU-Speicher cudaMemcpyToSymbol( hefty_gpu_constantTable, hefty_cpu_constantTable, sizeof(uint32_t) * 64 ); // Speicher für alle Hefty1 hashes belegen CUDA_SAFE_CALL(cudaMalloc(&heavy_heftyHashes[thr_id], (size_t) 32 * threads)); } __host__ void hefty_cpu_free(int thr_id) { cudaFree(heavy_heftyHashes[thr_id]); } __host__ void hefty_cpu_setBlock(int thr_id, uint32_t threads, void *data, int len) // data muss 80/84-Byte haben! { // Nachricht expandieren und setzen uint32_t msgBlock[32]; memset(msgBlock, 0, sizeof(msgBlock)); memcpy(&msgBlock[0], data, len); if (len == 84) { msgBlock[21] |= 0x80; msgBlock[31] = 672; // bitlen } else if (len == 80) { msgBlock[20] |= 0x80; msgBlock[31] = 640; // bitlen } for(int i=0;i<31;i++) // Byteorder drehen msgBlock[i] = SWAB32(msgBlock[i]); // die erste Runde wird auf der CPU durchgeführt, da diese für // alle Threads gleich ist. Der Hash wird dann an die Threads // übergeben // Erstelle expandierten Block W uint32_t W[64]; memcpy(W, &msgBlock[0], sizeof(uint32_t) * 16); for(int j=16;j<64;j++) W[j] = s1(W[j-2]) + W[j-7] + s0(W[j-15]) + W[j-16]; // Initialisiere die register a bis h mit der Hash-Tabelle uint32_t regs[8]; uint32_t hash[8]; uint32_t sponge[4]; // pre memset(sponge, 0, sizeof(uint32_t) * 4); for (int k=0; k < 8; k++) { regs[k] = hefty_cpu_hashTable[k]; hash[k] = regs[k]; } // 1. Runde for(int j=0;j<16;j++) Absorb(sponge, W[j] ^ hefty_cpu_constantTable[j]); for(int j=0;j<16;j++) { Absorb(sponge, regs[3] ^ regs[7]); hefty_cpu_round(regs, W[j], hefty_cpu_constantTable[j], sponge); } for(int j=16;j<64;j++) { Absorb(sponge, regs[3] + regs[7]); hefty_cpu_round(regs, W[j], hefty_cpu_constantTable[j], sponge); } for(int k=0;k<8;k++) hash[k] += regs[k]; // sponge speichern cudaMemcpyToSymbol(hefty_gpu_sponge, sponge, 16); // hash speichern cudaMemcpyToSymbol(hefty_gpu_register, hash, 32); // Blockheader setzen (korrekte Nonce fehlt da drin noch) CUDA_SAFE_CALL(cudaMemcpyToSymbol(hefty_gpu_blockHeader, &msgBlock[16], 64)); } __host__ void hefty_cpu_hash(int thr_id, uint32_t threads, int startNounce) { uint32_t threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs #if USE_SHARED int shared_size = 8 * 64 * sizeof(uint32_t); #else int shared_size = 0; #endif hefty_gpu_hash <<< grid, block, shared_size >>> (threads, startNounce, heavy_heftyHashes[thr_id]); // Strategisches Sleep Kommando zur Senkung der CPU Last MyStreamSynchronize(NULL, 0, thr_id); }