#if 1 #include #include "cuda_runtime.h" #include "device_launch_parameters.h" #include #include // Folgende Definitionen später durch header ersetzen typedef unsigned char uint8_t; typedef unsigned int uint32_t; // Endian Drehung für 32 Bit Typen /* static __device__ uint32_t cuda_swab32(uint32_t x) { return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) | ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); } */ static __device__ uint32_t cuda_swab32(uint32_t x) { return __byte_perm(x, 0, 0x0123); } // das Hi Word in einem 64 Bit Typen ersetzen static __device__ unsigned long long REPLACE_HIWORD(const unsigned long long &x, const uint32_t &y) { return (x & 0xFFFFFFFFULL) | (((unsigned long long)y) << 32ULL); } #if 0 // Endian Drehung für 64 Bit Typen static __device__ unsigned long long cuda_swab64(unsigned long long x) { uint32_t h = (x >> 32); uint32_t l = (x & 0xFFFFFFFFULL); return (((unsigned long long)cuda_swab32(l)) << 32) | ((unsigned long long)cuda_swab32(h)); } // das Hi Word aus einem 64 Bit Typen extrahieren static __device__ uint32_t HIWORD(const unsigned long long &x) { #if __CUDA_ARCH__ >= 130 return (uint32_t)__double2hiint(__longlong_as_double(x)); #else return (uint32_t)(x >> 32); #endif } // das Lo Word aus einem 64 Bit Typen extrahieren static __device__ uint32_t LOWORD(const unsigned long long &x) { #if __CUDA_ARCH__ >= 130 return (uint32_t)__double2loint(__longlong_as_double(x)); #else return (uint32_t)(x & 0xFFFFFFFFULL); #endif } static __device__ unsigned long long MAKE_ULONGLONG(uint32_t LO, uint32_t HI) { #if __CUDA_ARCH__ >= 130 return __double_as_longlong(__hiloint2double(HI, LO)); #else return (unsigned long long)LO | (((unsigned long long)HI) << 32ULL); #endif } // das Lo Word in einem 64 Bit Typen ersetzen static __device__ unsigned long long REPLACE_LOWORD(const unsigned long long &x, const uint32_t &y) { return (x & 0xFFFFFFFF00000000ULL) | ((unsigned long long)y); } #endif // der Versuch, einen Wrapper für einen aus 32 Bit Registern zusammengesetzten uin64_t Typen zu entferfen... #if 1 typedef unsigned long long uint64_t; #else typedef class uint64 { public: __device__ uint64() { } __device__ uint64(unsigned long long init) { val = make_uint2( LOWORD(init), HIWORD(init) ); } __device__ uint64(uint32_t lo, uint32_t hi) { val = make_uint2( lo, hi ); } __device__ const uint64 operator^(uint64 const& rhs) const { return uint64(val.x ^ rhs.val.x, val.y ^ rhs.val.y); } __device__ const uint64 operator|(uint64 const& rhs) const { return uint64(val.x | rhs.val.x, val.y | rhs.val.y); } __device__ const uint64 operator+(unsigned long long const& rhs) const { return *this+uint64(rhs); } __device__ const uint64 operator+(uint64 const& rhs) const { uint64 res; asm ("add.cc.u32 %0, %2, %4;\n\t" "addc.cc.u32 %1, %3, %5;\n\t" : "=r"(res.val.x), "=r"(res.val.y) : "r"( val.x), "r"( val.y), "r"(rhs.val.x), "r"(rhs.val.y)); return res; } __device__ const uint64 operator-(uint64 const& rhs) const { uint64 res; asm ("sub.cc.u32 %0, %2, %4;\n\t" "subc.cc.u32 %1, %3, %5;\n\t" : "=r"(res.val.x), "=r"(res.val.y) : "r"( val.x), "r"( val.y), "r"(rhs.val.x), "r"(rhs.val.y)); return res; } __device__ const uint64 operator<<(int n) const { return uint64(unsigned long long(*this)<>(int n) const { return uint64(unsigned long long(*this)>>n); } __device__ operator unsigned long long() const { return MAKE_ULONGLONG(val.x, val.y); } uint2 val; } uint64_t; #endif // aus heavy.cu extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); // die Message it Padding zur Berechnung auf der GPU __constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) #define SPH_C64(x) ((uint64_t)(x ## ULL)) // aus heavy.cu extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); // diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt #if __CUDA_ARCH__ >= 350 __forceinline__ __device__ uint64_t ROTL64(const uint64_t value, const int offset) { uint2 result; if(offset >= 32) { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); } else { asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); } return __double_as_longlong(__hiloint2double(result.y, result.x)); } #else #define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) #endif #define SHL(x, n) ((x) << (n)) #define SHR(x, n) ((x) >> (n)) #define CONST_EXP2 q[i+0] + ROTL64(q[i+1], 5) + q[i+2] + ROTL64(q[i+3], 11) + \ q[i+4] + ROTL64(q[i+5], 27) + q[i+6] + ROTL64(q[i+7], 32) + \ q[i+8] + ROTL64(q[i+9], 37) + q[i+10] + ROTL64(q[i+11], 43) + \ q[i+12] + ROTL64(q[i+13], 53) + (SHR(q[i+14],1) ^ q[i+14]) + (SHR(q[i+15],2) ^ q[i+15]) __device__ void Compression512(uint64_t *msg, uint64_t *hash) { // Compression ref. implementation uint64_t tmp; uint64_t q[32]; tmp = (msg[ 5] ^ hash[ 5]) - (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]) + (msg[14] ^ hash[14]); q[0] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[1]; tmp = (msg[ 6] ^ hash[ 6]) - (msg[ 8] ^ hash[ 8]) + (msg[11] ^ hash[11]) + (msg[14] ^ hash[14]) - (msg[15] ^ hash[15]); q[1] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[2]; tmp = (msg[ 0] ^ hash[ 0]) + (msg[ 7] ^ hash[ 7]) + (msg[ 9] ^ hash[ 9]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]); q[2] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[3]; tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 1] ^ hash[ 1]) + (msg[ 8] ^ hash[ 8]) - (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]); q[3] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[4]; tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 2] ^ hash[ 2]) + (msg[ 9] ^ hash[ 9]) - (msg[11] ^ hash[11]) - (msg[14] ^ hash[14]); q[4] = (SHR(tmp, 1) ^ tmp) + hash[5]; tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 2] ^ hash[ 2]) + (msg[10] ^ hash[10]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]); q[5] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[6]; tmp = (msg[ 4] ^ hash[ 4]) - (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) - (msg[11] ^ hash[11]) + (msg[13] ^ hash[13]); q[6] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[7]; tmp = (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 5] ^ hash[ 5]) - (msg[12] ^ hash[12]) - (msg[14] ^ hash[14]); q[7] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[8]; tmp = (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) - (msg[ 6] ^ hash[ 6]) + (msg[13] ^ hash[13]) - (msg[15] ^ hash[15]); q[8] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[9]; tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) + (msg[ 6] ^ hash[ 6]) - (msg[ 7] ^ hash[ 7]) + (msg[14] ^ hash[14]); q[9] = (SHR(tmp, 1) ^ tmp) + hash[10]; tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 7] ^ hash[ 7]) + (msg[15] ^ hash[15]); q[10] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[11]; tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 0] ^ hash[ 0]) - (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) + (msg[ 9] ^ hash[ 9]); q[11] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[12]; tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 3] ^ hash[ 3]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[10] ^ hash[10]); q[12] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[13]; tmp = (msg[ 2] ^ hash[ 2]) + (msg[ 4] ^ hash[ 4]) + (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[11] ^ hash[11]); q[13] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[14]; tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 5] ^ hash[ 5]) + (msg[ 8] ^ hash[ 8]) - (msg[11] ^ hash[11]) - (msg[12] ^ hash[12]); q[14] = (SHR(tmp, 1) ^ tmp) + hash[15]; tmp = (msg[12] ^ hash[12]) - (msg[ 4] ^ hash[ 4]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[13] ^ hash[13]); q[15] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[0]; // Expand 1 #pragma unroll 2 for(int i=0;i<2;i++) { q[i+16] = (SHR(q[i], 1) ^ SHL(q[i], 2) ^ ROTL64(q[i], 13) ^ ROTL64(q[i], 43)) + (SHR(q[i+1], 2) ^ SHL(q[i+1], 1) ^ ROTL64(q[i+1], 19) ^ ROTL64(q[i+1], 53)) + (SHR(q[i+2], 2) ^ SHL(q[i+2], 2) ^ ROTL64(q[i+2], 28) ^ ROTL64(q[i+2], 59)) + (SHR(q[i+3], 1) ^ SHL(q[i+3], 3) ^ ROTL64(q[i+3], 4) ^ ROTL64(q[i+3], 37)) + (SHR(q[i+4], 1) ^ SHL(q[i+4], 2) ^ ROTL64(q[i+4], 13) ^ ROTL64(q[i+4], 43)) + (SHR(q[i+5], 2) ^ SHL(q[i+5], 1) ^ ROTL64(q[i+5], 19) ^ ROTL64(q[i+5], 53)) + (SHR(q[i+6], 2) ^ SHL(q[i+6], 2) ^ ROTL64(q[i+6], 28) ^ ROTL64(q[i+6], 59)) + (SHR(q[i+7], 1) ^ SHL(q[i+7], 3) ^ ROTL64(q[i+7], 4) ^ ROTL64(q[i+7], 37)) + (SHR(q[i+8], 1) ^ SHL(q[i+8], 2) ^ ROTL64(q[i+8], 13) ^ ROTL64(q[i+8], 43)) + (SHR(q[i+9], 2) ^ SHL(q[i+9], 1) ^ ROTL64(q[i+9], 19) ^ ROTL64(q[i+9], 53)) + (SHR(q[i+10], 2) ^ SHL(q[i+10], 2) ^ ROTL64(q[i+10], 28) ^ ROTL64(q[i+10], 59)) + (SHR(q[i+11], 1) ^ SHL(q[i+11], 3) ^ ROTL64(q[i+11], 4) ^ ROTL64(q[i+11], 37)) + (SHR(q[i+12], 1) ^ SHL(q[i+12], 2) ^ ROTL64(q[i+12], 13) ^ ROTL64(q[i+12], 43)) + (SHR(q[i+13], 2) ^ SHL(q[i+13], 1) ^ ROTL64(q[i+13], 19) ^ ROTL64(q[i+13], 53)) + (SHR(q[i+14], 2) ^ SHL(q[i+14], 2) ^ ROTL64(q[i+14], 28) ^ ROTL64(q[i+14], 59)) + (SHR(q[i+15], 1) ^ SHL(q[i+15], 3) ^ ROTL64(q[i+15], 4) ^ ROTL64(q[i+15], 37)) + (( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]); } #pragma unroll 4 for(int i=2;i<6;i++) { q[i+16] = CONST_EXP2 + (( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]); } #pragma unroll 3 for(int i=6;i<9;i++) { q[i+16] = CONST_EXP2 + (( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i+7]); } #pragma unroll 4 for(int i=9;i<13;i++) { q[i+16] = CONST_EXP2 + (( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]); } #pragma unroll 3 for(int i=13;i<16;i++) { q[i+16] = CONST_EXP2 + (( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + ROTL64(msg[i-13], (i-13)+1) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]); } uint64_t XL64 = q[16]^q[17]^q[18]^q[19]^q[20]^q[21]^q[22]^q[23]; uint64_t XH64 = XL64^q[24]^q[25]^q[26]^q[27]^q[28]^q[29]^q[30]^q[31]; hash[0] = (SHL(XH64, 5) ^ SHR(q[16],5) ^ msg[ 0]) + ( XL64 ^ q[24] ^ q[ 0]); hash[1] = (SHR(XH64, 7) ^ SHL(q[17],8) ^ msg[ 1]) + ( XL64 ^ q[25] ^ q[ 1]); hash[2] = (SHR(XH64, 5) ^ SHL(q[18],5) ^ msg[ 2]) + ( XL64 ^ q[26] ^ q[ 2]); hash[3] = (SHR(XH64, 1) ^ SHL(q[19],5) ^ msg[ 3]) + ( XL64 ^ q[27] ^ q[ 3]); hash[4] = (SHR(XH64, 3) ^ q[20] ^ msg[ 4]) + ( XL64 ^ q[28] ^ q[ 4]); hash[5] = (SHL(XH64, 6) ^ SHR(q[21],6) ^ msg[ 5]) + ( XL64 ^ q[29] ^ q[ 5]); hash[6] = (SHR(XH64, 4) ^ SHL(q[22],6) ^ msg[ 6]) + ( XL64 ^ q[30] ^ q[ 6]); hash[7] = (SHR(XH64,11) ^ SHL(q[23],2) ^ msg[ 7]) + ( XL64 ^ q[31] ^ q[ 7]); hash[ 8] = ROTL64(hash[4], 9) + ( XH64 ^ q[24] ^ msg[ 8]) + (SHL(XL64,8) ^ q[23] ^ q[ 8]); hash[ 9] = ROTL64(hash[5],10) + ( XH64 ^ q[25] ^ msg[ 9]) + (SHR(XL64,6) ^ q[16] ^ q[ 9]); hash[10] = ROTL64(hash[6],11) + ( XH64 ^ q[26] ^ msg[10]) + (SHL(XL64,6) ^ q[17] ^ q[10]); hash[11] = ROTL64(hash[7],12) + ( XH64 ^ q[27] ^ msg[11]) + (SHL(XL64,4) ^ q[18] ^ q[11]); hash[12] = ROTL64(hash[0],13) + ( XH64 ^ q[28] ^ msg[12]) + (SHR(XL64,3) ^ q[19] ^ q[12]); hash[13] = ROTL64(hash[1],14) + ( XH64 ^ q[29] ^ msg[13]) + (SHR(XL64,4) ^ q[20] ^ q[13]); hash[14] = ROTL64(hash[2],15) + ( XH64 ^ q[30] ^ msg[14]) + (SHR(XL64,7) ^ q[21] ^ q[14]); hash[15] = ROTL64(hash[3],16) + ( XH64 ^ q[31] ^ msg[15]) + (SHR(XL64,2) ^ q[22] ^ q[15]); } static __constant__ uint64_t d_constMem[16]; static uint64_t h_constMem[16] = { SPH_C64(0x8081828384858687), SPH_C64(0x88898A8B8C8D8E8F), SPH_C64(0x9091929394959697), SPH_C64(0x98999A9B9C9D9E9F), SPH_C64(0xA0A1A2A3A4A5A6A7), SPH_C64(0xA8A9AAABACADAEAF), SPH_C64(0xB0B1B2B3B4B5B6B7), SPH_C64(0xB8B9BABBBCBDBEBF), SPH_C64(0xC0C1C2C3C4C5C6C7), SPH_C64(0xC8C9CACBCCCDCECF), SPH_C64(0xD0D1D2D3D4D5D6D7), SPH_C64(0xD8D9DADBDCDDDEDF), SPH_C64(0xE0E1E2E3E4E5E6E7), SPH_C64(0xE8E9EAEBECEDEEEF), SPH_C64(0xF0F1F2F3F4F5F6F7), SPH_C64(0xF8F9FAFBFCFDFEFF) }; __global__ void quark_bmw512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); int hashPosition = nounce - startNounce; uint64_t *inpHash = &g_hash[8 * hashPosition]; // Init uint64_t h[16]; /* h[ 0] = SPH_C64(0x8081828384858687); h[ 1] = SPH_C64(0x88898A8B8C8D8E8F); h[ 2] = SPH_C64(0x9091929394959697); h[ 3] = SPH_C64(0x98999A9B9C9D9E9F); h[ 4] = SPH_C64(0xA0A1A2A3A4A5A6A7); h[ 5] = SPH_C64(0xA8A9AAABACADAEAF); h[ 6] = SPH_C64(0xB0B1B2B3B4B5B6B7); h[ 7] = SPH_C64(0xB8B9BABBBCBDBEBF); h[ 8] = SPH_C64(0xC0C1C2C3C4C5C6C7); h[ 9] = SPH_C64(0xC8C9CACBCCCDCECF); h[10] = SPH_C64(0xD0D1D2D3D4D5D6D7); h[11] = SPH_C64(0xD8D9DADBDCDDDEDF); h[12] = SPH_C64(0xE0E1E2E3E4E5E6E7); h[13] = SPH_C64(0xE8E9EAEBECEDEEEF); h[14] = SPH_C64(0xF0F1F2F3F4F5F6F7); h[15] = SPH_C64(0xF8F9FAFBFCFDFEFF); */ #pragma unroll 16 for(int i=0;i<16;i++) h[i] = d_constMem[i]; // Nachricht kopieren (Achtung, die Nachricht hat 64 Byte, // BMW arbeitet mit 128 Byte!!! uint64_t message[16]; #pragma unroll 8 for(int i=0;i<8;i++) message[i] = inpHash[i]; #pragma unroll 6 for(int i=9;i<15;i++) message[i] = 0; // Padding einfügen (Byteorder?!?) message[8] = SPH_C64(0x80); // Länge (in Bits, d.h. 64 Byte * 8 = 512 Bits message[15] = SPH_C64(512); // Compression 1 Compression512(message, h); // Final #pragma unroll 16 for(int i=0;i<16;i++) message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i; Compression512(h, message); // fertig uint64_t *outpHash = &g_hash[8 * hashPosition]; #pragma unroll 8 for(int i=0;i<8;i++) outpHash[i] = message[i+8]; } } __global__ void quark_bmw512_gpu_hash_80(int threads, uint32_t startNounce, uint64_t *g_hash) { int thread = (blockDim.x * blockIdx.x + threadIdx.x); if (thread < threads) { uint32_t nounce = startNounce + thread; // Init uint64_t h[16]; #pragma unroll 16 for(int i=0;i<16;i++) h[i] = d_constMem[i]; // Nachricht kopieren (Achtung, die Nachricht hat 64 Byte, // BMW arbeitet mit 128 Byte!!! uint64_t message[16]; #pragma unroll 16 for(int i=0;i<16;i++) message[i] = c_PaddedMessage80[i]; // die Nounce durch die thread-spezifische ersetzen message[9] = REPLACE_HIWORD(message[9], cuda_swab32(nounce)); // Compression 1 Compression512(message, h); // Final #pragma unroll 16 for(int i=0;i<16;i++) message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i; Compression512(h, message); // fertig uint64_t *outpHash = &g_hash[8 * thread]; #pragma unroll 8 for(int i=0;i<8;i++) outpHash[i] = message[i+8]; } } // Setup-Funktionen __host__ void quark_bmw512_cpu_init(int thr_id, int threads) { // nix zu tun ;-) // jetzt schon :D cudaMemcpyToSymbol( d_constMem, h_constMem, sizeof(h_constMem), 0, cudaMemcpyHostToDevice); } // Bmw512 für 80 Byte grosse Eingangsdaten __host__ void quark_bmw512_cpu_setBlock_80(void *pdata) { // Message mit Padding bereitstellen // lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. unsigned char PaddedMessage[128]; memcpy(PaddedMessage, pdata, 80); memset(PaddedMessage+80, 0, 48); uint64_t *message = (uint64_t*)PaddedMessage; // Padding einfügen (Byteorder?!?) message[10] = SPH_C64(0x80); // Länge (in Bits, d.h. 80 Byte * 8 = 640 Bits message[15] = SPH_C64(640); // die Message zur Berechnung auf der GPU cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); } __host__ void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) { const int threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs size_t shared_size = 0; quark_bmw512_gpu_hash_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); MyStreamSynchronize(NULL, order, thr_id); } __host__ void quark_bmw512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order) { const int threadsperblock = 256; // berechne wie viele Thread Blocks wir brauchen dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 block(threadsperblock); // Größe des dynamischen Shared Memory Bereichs size_t shared_size = 0; quark_bmw512_gpu_hash_80<<>>(threads, startNounce, (uint64_t*)d_hash); MyStreamSynchronize(NULL, order, thr_id); } #endif