decred: return to previous implementation + second nonce

seems better on windows and a bit easier to read...
This commit is contained in:
Tanguy Pruvot 2016-06-23 03:53:55 +02:00
parent c643b3b900
commit eae4ede111

View File

@ -1,5 +1,5 @@
/** /**
* Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2) * Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2/6.1)
* *
* Tanguy Pruvot - Feb 2016 * Tanguy Pruvot - Feb 2016
* *
@ -17,11 +17,10 @@ extern "C" {
} }
/* threads per block */ /* threads per block */
#define TPB 768 #define TPB 640
#define NPT 192
#define maxResults 8 /* max count of found nonces in one call (like sgminer) */
/* max count of found nonces in one call */ #define maxResults 4
#define NBN 2
/* hash by cpu with blake 256 */ /* hash by cpu with blake 256 */
extern "C" void decred_hash(void *output, const void *input) extern "C" void decred_hash(void *output, const void *input)
@ -39,311 +38,182 @@ extern "C" void decred_hash(void *output, const void *input)
#ifdef __INTELLISENSE__ #ifdef __INTELLISENSE__
#define __byte_perm(x, y, b) x #define __byte_perm(x, y, b) x
#define atomicInc(p, max) (*p) #define atomicInc(p, max) (*p)++
#endif #endif
__constant__ uint32_t c_m[3]; __constant__ uint32_t _ALIGN(16) c_h[2];
__constant__ uint32_t _ALIGN(8) c_h[2]; __constant__ uint32_t _ALIGN(16) c_data[32];
__constant__ uint32_t _ALIGN(32) c_v[16]; __constant__ uint32_t _ALIGN(16) c_xors[215];
__constant__ uint32_t _ALIGN(32) c_x[90];
/* Buffers of candidate nonce(s) */ /* Buffers of candidate nonce(s) */
static uint32_t *d_resNonce[MAX_GPUS]; static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS]; static uint32_t *h_resNonce[MAX_GPUS];
__device__ __forceinline__ #define ROR8(a) __byte_perm(a, 0, 0x0321)
uint32_t ROR8(const uint32_t a) { #define ROL16(a) __byte_perm(a, 0, 0x1032)
return __byte_perm(a, 0, 0x0321);
}
__device__ __forceinline__ /* macro bodies */
uint32_t ROL16(const uint32_t a) { #define pxorGS(a,b,c,d) { \
return __byte_perm(a, 0, 0x1032); v[a]+= c_xors[i++] + v[b]; \
}
__device__ __forceinline__
uint32_t xor3x(uint32_t a, uint32_t b, uint32_t c) {
uint32_t result;
#if __CUDA_ARCH__ >= 500 && CUDA_VERSION >= 7050
asm ("lop3.b32 %0, %1, %2, %3, 0x96;" : "=r"(result) : "r"(a), "r"(b),"r"(c)); //0x96 = 0xF0 ^ 0xCC ^ 0xAA
#else
result = a^b^c;
#endif
return result;
}
#define GSn(a,b,c,d,x,y) { \
v[a]+= x + v[b]; \
v[d] = ROL16(v[d] ^ v[a]); \ v[d] = ROL16(v[d] ^ v[a]); \
v[c]+= v[d]; \ v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \ v[b] = ROTR32(v[b] ^ v[c], 12); \
v[a]+= y + v[b]; \ v[a]+= c_xors[i++] + v[b]; \
v[d] = ROR8(v[d] ^ v[a]); \ v[d] = ROR8(v[d] ^ v[a]); \
v[c]+= v[d]; \ v[c]+= v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \ v[b] = ROTR32(v[b] ^ v[c], 7); \
} }
#define GSn3(a,b,c,d,x,y, a1,b1,c1,d1,x1,y1, a2,b2,c2,d2,x2,y2) { \ #define pxorGS2(a,b,c,d, a1,b1,c1,d1) {\
v[ a]+= x + v[ b]; v[a1]+= x1 + v[b1]; v[a2]+= x2 + v[b2];\ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); v[d2] = ROL16(v[d2] ^ v[a2]);\ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; v[c2]+= v[d2];\ v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); v[b2] = ROTR32(v[b2] ^ v[c2], 12);\ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= y + v[ b]; v[a1]+= y1 + v[b1]; v[a2]+= y2 + v[b2];\ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); v[d2] = ROR8(v[d2] ^ v[a2]);\ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; v[c2]+= v[d2];\ v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); v[b2] = ROTR32(v[b2] ^ v[c2], 7);\ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
} }
#define GSn4(a,b,c,d,x,y, a1,b1,c1,d1,x1,y1, a2,b2,c2,d2,x2,y2, a3,b3,c3,d3,x3,y3) { \ #define pxory1GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= x + v[ b]; v[a1]+= x1 + v[b1]; v[a2]+= x2 + v[b2]; v[a3]+= x3 + v[b3]; \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); v[d2] = ROL16(v[d2] ^ v[a2]); v[d3] = ROL16(v[d3] ^ v[a3]); \ v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; v[c2]+= v[d2]; v[c3]+= v[d3]; \ v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); v[b2] = ROTR32(v[b2] ^ v[c2], 12); v[b3] = ROTR32(v[b3] ^ v[c3], 12); \ v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= y + v[ b]; v[a1]+= y1 + v[b1]; v[a2]+= y2 + v[b2]; v[a3]+= y3 + v[b3]; \ v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); v[d2] = ROR8(v[d2] ^ v[a2]); v[d3] = ROR8(v[d3] ^ v[a3]); \ v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; v[c2]+= v[d2]; v[c3]+= v[d3]; \ v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); v[b2] = ROTR32(v[b2] ^ v[c2], 7); v[b3] = ROTR32(v[b3] ^ v[c3], 7); \ v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxory0GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx1GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= (c_xors[i++]^nonce) + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define pxorx0GS2(a,b,c,d, a1,b1,c1,d1) { \
v[ a]+= (c_xors[i++]^nonce) + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROL16(v[ d] ^ v[ a]); v[d1] = ROL16(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 12); v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[ a]+= c_xors[i++] + v[ b]; v[a1]+= c_xors[i++] + v[b1]; \
v[ d] = ROR8(v[ d] ^ v[ a]); v[d1] = ROR8(v[d1] ^ v[a1]); \
v[ c]+= v[ d]; v[c1]+= v[d1]; \
v[ b] = ROTR32(v[ b] ^ v[ c], 7); v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
} }
__global__ __launch_bounds__(TPB,1) __global__ __launch_bounds__(TPB,1)
void decred_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce) void decred_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint32_t highTarget)
{ {
uint64_t m3 = startNonce + blockDim.x * blockIdx.x + threadIdx.x; const uint32_t thread = blockDim.x * blockIdx.x + threadIdx.x;
const uint32_t step = gridDim.x * blockDim.x;
const uint64_t maxNonce = startNonce + threads;
const uint32_t z[16] = { if (thread < threads)
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, {
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89, uint32_t v[16];
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, #pragma unroll
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917 for(int i=0; i<16; i+=4) {
}; *(uint4*)&v[i] = *(uint4*)&c_data[i];
uint32_t v[16];
uint32_t m[16];
#pragma unroll
for(int i=0;i<3;i++) {
m[i] = c_m[i];
}
m[13] = 0x80000001;
m[15] = 0x000005a0;
const uint32_t m130 = z[12] ^ m[13];
const uint32_t m131 = m[13] ^ z[ 6];
const uint32_t m132 = z[15] ^ m[13];
const uint32_t m133 = z[ 3] ^ m[13];
const uint32_t m134 = z[ 4] ^ m[13];
const uint32_t m135 = z[14] ^ m[13];
const uint32_t m136 = m[13] ^ z[11];
const uint32_t m137 = m[13] ^ z[ 7];
const uint32_t m138 = m[13] ^ z[ 0];
volatile uint32_t m150 = z[14] ^ m[15];
volatile uint32_t m151 = z[ 9] ^ m[15];
volatile uint32_t m152 = m[15] ^ z[13];
volatile uint32_t m153 = m[15] ^ z[ 8];
const uint32_t m154 = z[10] ^ m[15];
const uint32_t m155 = z[ 1] ^ m[15];
const uint32_t m156 = m[15] ^ z[ 4];
const uint32_t m157 = z[ 6] ^ m[15];
const uint32_t m158 = m[15] ^ z[11];
const uint32_t h7 = c_h[ 0];
for( ; m3<maxNonce ; m3+=step) {
m[ 3] = m3;
#pragma unroll 16
for(int i=0; i<16; i++) {
v[i] = c_v[i];
} }
uint32_t xors[16]; const uint32_t nonce = startNonce + thread;
uint32_t i = 0; v[ 1]+= (nonce ^ 0x13198A2E);
v[13] = ROR8(v[13] ^ v[1]);
v[ 9]+= v[13];
v[ 5] = ROTR32(v[5] ^ v[9], 7);
// round 1 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } partial int i = 0;
xors[ 5] = z[2] ^ m[3]; v[ 1]+= c_xors[i++];// + v[ 6];
xors[ 9] = c_x[i++]; xors[10] = c_x[i++]; v[ 0]+= v[5];
xors[11] = z[15]; v[12] = ROL16(v[12] ^ v[ 1]); v[15] = ROL16(v[15] ^ v[ 0]);
xors[12] = c_x[i++]; xors[13] = c_x[i++]; v[11]+= v[12]; v[10]+= v[15];
xors[14] = m130; v[ 6] = ROTR32(v[ 6] ^ v[11], 12); v[ 5] = ROTR32(v[5] ^ v[10], 12);
xors[15] = m150; v[ 1]+= c_xors[i++] + v[ 6]; v[ 0]+= c_xors[i++] + v[ 5];
v[12] = ROR8(v[12] ^ v[ 1]); v[15] = ROR8(v[15] ^ v[ 0]);
v[11]+= v[12]; v[10]+= v[15];
v[ 6] = ROTR32(v[ 6] ^ v[11], 7); v[ 5] = ROTR32(v[ 5] ^ v[10], 7);
v[ 1] += xors[ 5]; v[13] = ROR8(v[13] ^ v[1]); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
v[ 9] += v[13]; v[ 5] = ROTR32(v[5] ^ v[9], 7); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
v[ 0] += v[5]; v[15] = ROL16(v[15] ^ v[0]); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
v[10] += v[15]; v[ 5] = ROTR32(v[5] ^ v[10], 12); pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
v[ 0] += xors[12] + v[5]; v[15] = ROR8(v[15] ^ v[0]); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
v[10] += v[15]; v[ 5] = ROTR32(v[5] ^ v[10], 7); pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxory1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorx1GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxory0GS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorx0GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxory1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxory1GS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorGS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorx1GS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS2( 2, 7, 8, 13, 3, 4, 9, 14);
pxorx1GS2( 0, 4, 8, 12, 1, 5, 9, 13); pxorGS2( 2, 6, 10, 14, 3, 7, 11, 15); pxorGS2( 0, 5, 10, 15, 1, 6, 11, 12); pxorGS( 2, 7, 8, 13);
GSn3(1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]); if ((c_h[1]^v[15]) == v[7]) {
v[ 3] += c_xors[i++] + v[4];
// round 2 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } v[14] = ROL16(v[14] ^ v[3]);
xors[ 0] = z[10]; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m131; v[ 9] += v[14];
xors[ 8] = m[ 1]^z[12]; xors[ 9] = m[ 0]^z[ 2]; xors[10] = c_x[i++]; xors[11] = c_x[i++]; v[ 4] = ROTR32(v[4] ^ v[9], 12);
xors[ 4] = c_x[i++]; xors[ 5] = c_x[i++]; xors[ 6] = m151; xors[ 7] = c_x[i++]; v[ 3] += c_xors[i++] + v[4];
xors[12] = c_x[i++]; xors[13] = z[ 0]^m[ 2]; xors[14] = c_x[i++]; xors[15] = z[ 5]^m[ 3]; v[14] = ROR8(v[14] ^ v[3]);
if(cuda_swab32((c_h[0]^v[6]^v[14])) <= highTarget) {
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]); uint32_t pos = atomicInc(&resNonce[0], UINT32_MAX)+1;
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]); resNonce[pos] = nonce;
return;
// round 3 { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } }
xors[ 0] = c_x[i++]; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m152;
xors[ 8] = c_x[i++]; xors[ 9] = m[ 3]^z[ 6]; xors[10] = c_x[i++]; xors[11] = c_x[i++];
xors[ 4] = c_x[i++]; xors[ 5] = z[12]^m[ 0]; xors[ 6] = z[ 5]^m[ 2]; xors[ 7] = m132;
xors[12] = z[10]; xors[13] = c_x[i++]; xors[14] = z[ 7]^m[ 1]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 4 { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }
xors[ 0] = c_x[i++]; xors[ 1] = m[ 3]^z[ 1]; xors[ 2] = m130; xors[ 3] = c_x[i++];
xors[ 8] = m[ 2]^z[ 6]; xors[ 9] = c_x[i++]; xors[10] = c_x[i++]; xors[11] = m153;
xors[ 4] = c_x[i++]; xors[ 5] = z[ 3]^m[ 1]; xors[ 6] = c_x[i++]; xors[ 7] = z[11];
xors[12] = c_x[i++]; xors[13] = c_x[i++]; xors[14] = z[ 4]^m[ 0]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 5 { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }
xors[ 0] = c_x[i++]; xors[ 1] = c_x[i++]; xors[ 2] = m[ 2]^z[ 4]; xors[ 3] = c_x[i++];
xors[ 8] = z[ 1]; xors[ 9] = c_x[i++]; xors[10] = c_x[i++]; xors[11] = m[ 3]^z[13];
xors[ 4] = z[ 9]^m[ 0]; xors[ 5] = c_x[i++]; xors[ 6] = c_x[i++]; xors[ 7] = m154;
xors[12] = z[14]^m[ 1]; xors[13] = c_x[i++]; xors[14] = c_x[i++]; xors[15] = m133;
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 6 { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
xors[ 0] = m[ 2]^z[12]; xors[ 1] = c_x[i++]; xors[ 2] = m[ 0]^z[11]; xors[ 3] = c_x[i++];
xors[ 8] = c_x[i++]; xors[ 9] = c_x[i++]; xors[10] = m150; xors[11] = m[ 1]^z[ 9];
xors[ 4] = c_x[i++]; xors[ 5] = c_x[i++]; xors[ 6] = c_x[i++]; xors[ 7] = z[ 8]^m[ 3];
xors[12] = m134; xors[13] = c_x[i++]; xors[14] = z[15]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 7 { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }
xors[ 0] = c_x[i++]; xors[ 1] = m[ 1]^z[15]; xors[ 2] = z[13]; xors[ 3] = c_x[i++];
xors[ 8] = m[ 0]^z[ 7]; xors[ 9] = c_x[i++]; xors[10] = c_x[i++]; xors[11] = c_x[i++];
xors[ 4] = c_x[i++]; xors[ 5] = m155; xors[ 6] = m135; xors[ 7] = c_x[i++];
xors[12] = c_x[i++]; xors[13] = z[ 6]^m[ 3]; xors[14] = z[ 9]^m[ 2]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 8 { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }
xors[ 0] = m136; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m[ 3]^z[ 9];
xors[ 8] = c_x[i++]; xors[ 9] = m156; xors[10] = c_x[i++]; xors[11] = m[ 2]^z[10];
xors[ 4] = c_x[i++]; xors[ 5] = z[ 7]; xors[ 6] = z[12]^m[ 1]; xors[ 7] = c_x[i++];
xors[12] = z[ 5]^m[ 0]; xors[13] = c_x[i++]; xors[14] = c_x[i++]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 9 { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }
xors[ 0] = c_x[i++]; xors[ 1] = z[ 9]; xors[ 2] = c_x[i++]; xors[ 3] = m[ 0]^z[ 8];
xors[ 8] = c_x[i++]; xors[ 9] = m137; xors[10] = m[ 1]^z[ 4]; xors[11] = c_x[i++];
xors[ 4] = m157; xors[ 5] = c_x[i++]; xors[ 6] = z[11]^m[ 3]; xors[ 7] = c_x[i++];
xors[12] = z[12]^m[ 2]; xors[13] = c_x[i++]; xors[14] = c_x[i++]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 10 { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }
xors[ 0] = c_x[i++]; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m[ 1]^z[ 5];
xors[ 8] = m158; xors[ 9] = c_x[i++]; xors[10] = m[ 3]^z[12]; xors[11] = m138;
xors[ 4] = z[10]^m[ 2]; xors[ 5] = c_x[i++]; xors[ 6] = c_x[i++]; xors[ 7] = c_x[i++];
xors[12] = c_x[i++]; xors[13] = z[ 9]; xors[14] = c_x[i++]; xors[15] = z[13]^m[ 0];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 11 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }
xors[ 0] = m[ 0]^z[ 1]; xors[ 1] = m[ 2]^z[ 3]; xors[ 2] = c_x[i++]; xors[ 3] = c_x[i++];
xors[ 8] = c_x[i++]; xors[ 9] = c_x[ 0]; xors[10] = c_x[ 1]; xors[11] = z[15];
xors[ 4] = z[ 0]^m[ 1]; xors[ 5] = z[ 2]^m[ 3]; xors[ 6] = c_x[i++]; xors[ 7] = c_x[i++];
xors[12] = c_x[ 2]; xors[13] = c_x[ 3]; xors[14] = m130; xors[15] = m150;
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
//i=90
i=4;
// round 12 { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }
xors[ 0] = z[10]; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m131;
xors[ 8] = m[ 1]^z[12]; xors[ 9] = m[ 0]^z[ 2]; xors[10] = c_x[i++]; xors[11] = c_x[i++];
xors[ 4] = c_x[i++]; xors[ 5] = c_x[i++]; xors[ 6] = m151; xors[ 7] = c_x[i++];
xors[12] = c_x[i++]; xors[13] = z[ 0]^m[ 2]; xors[14] = c_x[i++]; xors[15] = z[ 5]^m[ 3];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 13 { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }
xors[ 0] = c_x[i++]; xors[ 1] = c_x[i++]; xors[ 2] = c_x[i++]; xors[ 3] = m152;
xors[ 8] = c_x[i++]; xors[ 9] = m[ 3]^z[ 6]; xors[10] = c_x[i++]; xors[11] = c_x[i++];
xors[ 4] = c_x[i++]; xors[ 5] = z[12]^m[ 0]; xors[ 6] = z[ 5]^m[ 2]; xors[ 7] = m132;
xors[12] = z[10]; xors[13] = c_x[i++]; xors[14] = z[ 7]^m[ 1]; xors[15] = c_x[i++];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
GSn4(0, 5,10,15, xors[ 8], xors[12], 1, 6,11,12, xors[ 9], xors[13], 2, 7, 8,13, xors[10], xors[14], 3, 4, 9,14, xors[11], xors[15]);
// round 14 { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }
xors[ 0] = c_x[i++]; xors[ 1] = m[ 3]^z[ 1]; xors[ 2] = m130; xors[ 3] = c_x[i++];
xors[ 8] = m[ 2]^z[ 6]; i++; xors[10] = c_x[i++];
xors[ 4] = c_x[i++]; xors[ 5] = z[ 3]^m[ 1]; xors[ 6] = c_x[i++]; xors[ 7] = z[11];
xors[12] = c_x[i++]; xors[14] = z[ 4]^m[ 0];
GSn4(0, 4, 8,12, xors[ 0], xors[ 4], 1, 5, 9,13, xors[ 1], xors[ 5], 2, 6,10,14, xors[ 2], xors[ 6], 3, 7,11,15, xors[ 3], xors[ 7]);
v[ 0]+= xors[ 8] + v[ 5];
v[ 2]+= xors[10] + v[ 7];
v[15] = ROL16(v[15] ^ v[ 0]);
v[13] = ROL16(v[13] ^ v[ 2]);
v[10]+= v[15];
v[ 8]+= v[13];
v[ 5] = ROTR32(v[ 5] ^ v[10], 12);
v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12);
v[ 0]+= xors[12] + v[ 5];
v[ 2]+= xors[14] + v[ 7];
v[15] = ROTR32(v[15] ^ v[ 0],1);
v[13] = ROR8(v[13] ^ v[ 2]);
v[ 8]+= v[13];
if(xor3x(v[ 7],h7,v[ 8])==v[15]) {
uint32_t pos = atomicInc(&resNonce[0], UINT32_MAX)+1;
if(pos < maxResults)
resNonce[pos] = m[3];
return;
} }
} }
} }
__host__ __host__
void decred_cpu_setBlock_52(const int thr_id,const uint32_t *input, const uint32_t *pend) void decred_cpu_setBlock_52(const uint32_t *input)
{ {
/*
Precompute everything possible and pass it on constant memory
*/
const uint32_t z[16] = { const uint32_t z[16] = {
0x243F6A88UL, 0x85A308D3UL, 0x13198A2EUL, 0x03707344UL, 0x243F6A88U, 0x85A308D3U, 0x13198A2EU, 0x03707344U,
0xA4093822UL, 0x299F31D0UL, 0x082EFA98UL, 0xEC4E6C89UL, 0xA4093822U, 0x299F31D0U, 0x082EFA98U, 0xEC4E6C89U,
0x452821E6UL, 0x38D01377UL, 0xBE5466CFUL, 0x34E90C6CUL, 0x452821E6U, 0x38D01377U, 0xBE5466CFU, 0x34E90C6CU,
0xC0AC29B7UL, 0xC97C50DDUL, 0x3F84D5B5UL, 0xB5470917UL 0xC0AC29B7U, 0xC97C50DDU, 0x3F84D5B5U, 0xB5470917U
}; };
sph_u32 _ALIGN(64) v[16]; int i=0;
sph_u32 _ALIGN(64) m[16]; uint32_t _ALIGN(64) preXOR[215];
sph_u32 _ALIGN(64) h[ 2]; uint32_t _ALIGN(64) data[16];
uint32_t _ALIGN(64) m[16];
uint32_t _ALIGN(64) h[ 2];
sph_blake256_context ctx; sph_blake256_context ctx;
sph_blake256_set_rounds(14); sph_blake256_set_rounds(14);
sph_blake256_init(&ctx); sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 128); sph_blake256(&ctx, input, 128);
v[ 0] = ctx.H[0]; v[ 1] = ctx.H[1]; data[ 0] = ctx.H[0];
v[ 2] = ctx.H[2]; v[ 3] = ctx.H[3]; data[ 1] = ctx.H[1];
v[ 4] = ctx.H[4]; v[ 5] = ctx.H[5]; data[ 2] = ctx.H[2];
v[ 8] = ctx.H[6]; v[12] = swab32(input[35]); data[ 3] = ctx.H[3];
v[13] = ctx.H[7]; data[ 4] = ctx.H[4];
data[ 5] = ctx.H[5];
data[ 8] = ctx.H[6];
data[12] = swab32(input[35]);
data[13] = ctx.H[7];
// pre swab32 // pre swab32
m[ 0] = swab32(input[32]); m[ 1] = swab32(input[33]); m[ 0] = swab32(input[32]); m[ 1] = swab32(input[33]);
@ -356,68 +226,117 @@ void decred_cpu_setBlock_52(const int thr_id,const uint32_t *input, const uint32
m[14] = 0; m[14] = 0;
m[15] = 0x000005a0; m[15] = 0x000005a0;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_m, m, 3*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); h[ 0] = data[ 8];
h[ 1] = data[13];
h[ 0] = v[ 8]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_h,h, 8, 0, cudaMemcpyHostToDevice));
h[ 1] = v[13];
v[ 0]+= (m[ 0] ^ z[1]) + v[ 4]; data[ 0]+= (m[ 0] ^ z[1]) + data[ 4];
v[12] = SPH_ROTR32(z[4] ^ SPH_C32(0x5A0) ^ v[ 0], 16); data[12] = SPH_ROTR32(z[4] ^ SPH_C32(0x5A0) ^ data[ 0], 16);
v[ 8] = z[0]+v[12]; data[ 8] = z[0]+data[12];
v[ 4] = SPH_ROTR32(v[ 4] ^ v[ 8], 12); data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 12);
v[ 0]+= (m[ 1] ^ z[0]) + v[ 4]; data[ 0]+= (m[ 1] ^ z[0]) + data[ 4];
v[12] = SPH_ROTR32(v[12] ^ v[ 0],8); data[12] = SPH_ROTR32(data[12] ^ data[ 0],8);
v[ 8]+= v[12]; data[ 8]+= data[12];
v[ 4] = SPH_ROTR32(v[ 4] ^ v[ 8], 7); data[ 4] = SPH_ROTR32(data[ 4] ^ data[ 8], 7);
v[ 1]+= (m[ 2] ^ z[3]) + v[ 5]; data[ 1]+= (m[ 2] ^ z[3]) + data[ 5];
v[13] = SPH_ROTR32((z[5] ^ SPH_C32(0x5A0)) ^ v[ 1], 16); data[13] = SPH_ROTR32((z[5] ^ SPH_C32(0x5A0)) ^ data[ 1], 16);
v[ 9] = z[1]+v[13]; data[ 9] = z[1]+data[13];
v[ 5] = SPH_ROTR32(v[ 5] ^ v[ 9], 12); data[ 5] = SPH_ROTR32(data[ 5] ^ data[ 9], 12);
v[ 1]+= v[ 5]; //+nonce ^ ... data[ 1]+= data[ 5]; //+nonce ^ ...
v[ 2]+= (m[ 4] ^ z[5]) + h[ 0]; data[ 2]+= (m[ 4] ^ z[5]) + h[ 0];
v[14] = SPH_ROTR32(z[6] ^ v[ 2],16); data[14] = SPH_ROTR32(z[6] ^ data[ 2],16);
v[10] = z[2] + v[14]; data[10] = z[2] + data[14];
v[ 6] = SPH_ROTR32(h[ 0] ^ v[10], 12); data[ 6] = SPH_ROTR32(h[ 0] ^ data[10], 12);
v[ 2]+= (m[ 5] ^ z[4]) + v[ 6]; data[ 2]+= (m[ 5] ^ z[4]) + data[ 6];
v[14] = SPH_ROTR32(v[14] ^ v[ 2], 8); data[14] = SPH_ROTR32(data[14] ^ data[ 2], 8);
v[10]+= v[14]; data[10]+= data[14];
v[ 6] = SPH_ROTR32(v[ 6] ^ v[10], 7); data[ 6] = SPH_ROTR32(data[ 6] ^ data[10], 7);
v[ 3]+= (m[ 6] ^ z[7]) + h[ 1]; data[ 3]+= (m[ 6] ^ z[7]) + h[ 1];
v[15] = SPH_ROTR32(z[7] ^ v[ 3],16); data[15] = SPH_ROTR32(z[7] ^ data[ 3],16);
v[11] = z[3] + v[15]; data[11] = z[3] + data[15];
v[ 7] = SPH_ROTR32(h[ 1] ^ v[11], 12); data[ 7] = SPH_ROTR32(h[ 1] ^ data[11], 12);
v[ 3]+= (m[ 7] ^ z[6]) + v[ 7]; data[ 3]+= (m[ 7] ^ z[6]) + data[ 7];
v[15] = SPH_ROTR32(v[15] ^ v[ 3],8); data[15] = SPH_ROTR32(data[15] ^ data[ 3],8);
v[11]+= v[15]; data[11]+= data[15];
v[ 7] = SPH_ROTR32(v[11] ^ v[ 7], 7); data[ 7] = SPH_ROTR32(data[11] ^ data[ 7], 7);
v[ 0]+= m[ 8] ^ z[9]; data[ 0]+= m[ 8] ^ z[9];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_v, v,16*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 64, 0, cudaMemcpyHostToDevice));
h[ 0] = SPH_ROTL32(h[ 1], 7); //align the rotation with v[7] v[15]; #define precalcXORGS(x,y) { \
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_h, h, 1*sizeof(uint32_t), 0, cudaMemcpyHostToDevice)); preXOR[i++]= (m[x] ^ z[y]); \
preXOR[i++]= (m[y] ^ z[x]); \
}
#define precalcXORGS2(x,y,x1,y1){\
preXOR[i++] = (m[ x] ^ z[ y]);\
preXOR[i++] = (m[x1] ^ z[y1]);\
preXOR[i++] = (m[ y] ^ z[ x]);\
preXOR[i++] = (m[y1] ^ z[x1]);\
}
precalcXORGS(10,11);
preXOR[ 0]+=data[ 6];
preXOR[i++] = (m[9] ^ z[8]);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS2( 4, 0,15, 8);
precalcXORGS2( 9, 0, 5, 7);
precalcXORGS2( 2, 4,10,15);
precalcXORGS2(14, 1,11,12);
precalcXORGS2( 6, 8, 3,13);
precalcXORGS2( 2,12, 6,10);
precalcXORGS2( 0,11, 8, 3);
precalcXORGS2( 4,13, 7, 5);
precalcXORGS2(15,14, 1, 9);
precalcXORGS2(12, 5, 1,15);
precalcXORGS2(14,13, 4,10);
precalcXORGS2( 0, 7, 6, 3);
precalcXORGS2( 9, 2, 8,11);
precalcXORGS2(13,11, 7,14);
precalcXORGS2(12, 1, 3, 9);
precalcXORGS2( 5, 0,15, 4);
precalcXORGS2( 8, 6, 2,10);
precalcXORGS2( 6,15,14, 9);
precalcXORGS2(11, 3, 0, 8);
precalcXORGS2(12, 2,13, 7);
precalcXORGS2( 1, 4,10, 5);
precalcXORGS2(10, 2, 8, 4);
precalcXORGS2( 7, 6, 1, 5);
precalcXORGS2(15,11, 9,14);
precalcXORGS2( 3,12,13, 0);
precalcXORGS2( 0, 1, 2, 3);
precalcXORGS2( 4, 5, 6, 7);
precalcXORGS2( 8, 9,10,11);
precalcXORGS2(12,13,14,15);
precalcXORGS2(14,10, 4, 8);
precalcXORGS2( 9,15,13, 6);
precalcXORGS2( 1,12, 0, 2);
precalcXORGS2(11, 7, 5, 3);
precalcXORGS2(11, 8,12, 0);
precalcXORGS2( 5, 2,15,13);
precalcXORGS2(10,14, 3, 6);
precalcXORGS2( 7, 1, 9, 4);
precalcXORGS2( 7, 9, 3, 1);
precalcXORGS2(13,12,11,14);
precalcXORGS2( 2, 6, 5,10);
precalcXORGS( 4, 0);
precalcXORGS(15, 8);
uint32_t x[90]; CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_xors, preXOR, 215*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
int i=0;
x[i++] = m[10]^z[11]; x[i++] = m[12]^z[13]; x[i++] = m[ 9]^z[ 8]; x[i++] = z[10]^m[11]; x[i++] = m[ 4]^z[ 8]; x[i++] = m[ 9]^z[15]; x[i++] = m[11]^z[ 7]; x[i++] = m[ 5]^z[ 3];
x[i++] = z[14]^m[10]; x[i++] = z[ 4]^m[ 8]; x[i++] = z[13]^m[ 6]; x[i++] = z[ 1]^m[12]; x[i++] = z[11]^m[ 7]; x[i++] = m[11]^z[ 8]; x[i++] = m[12]^z[ 0]; x[i++] = m[ 5]^z[ 2];
x[i++] = m[10]^z[14]; x[i++] = m[ 7]^z[ 1]; x[i++] = m[ 9]^z[ 4]; x[i++] = z[11]^m[ 8]; x[i++] = z[ 3]^m[ 6]; x[i++] = z[ 9]^m[ 4]; x[i++] = m[ 7]^z[ 9]; x[i++] = m[11]^z[14];
x[i++] = m[ 5]^z[10]; x[i++] = m[ 4]^z[ 0]; x[i++] = z[ 7]^m[ 9]; x[i++] = z[13]^m[12]; x[i++] = z[ 2]^m[ 6]; x[i++] = z[ 5]^m[10]; x[i++] = z[15]^m[ 8]; x[i++] = m[ 9]^z[ 0];
x[i++] = m[ 5]^z[ 7]; x[i++] = m[10]^z[15]; x[i++] = m[11]^z[12]; x[i++] = m[ 6]^z[ 8]; x[i++] = z[ 5]^m[ 7]; x[i++] = z[ 2]^m[ 4]; x[i++] = z[11]^m[12]; x[i++] = z[ 6]^m[ 8];
x[i++] = m[ 6]^z[10]; x[i++] = m[ 8]^z[ 3]; x[i++] = m[ 4]^z[13]; x[i++] = m[ 7]^z[ 5]; x[i++] = z[ 2]^m[12]; x[i++] = z[ 6]^m[10]; x[i++] = z[ 0]^m[11]; x[i++] = z[ 7]^m[ 5];
x[i++] = z[ 1]^m[ 9]; x[i++] = m[12]^z[ 5]; x[i++] = m[ 4]^z[10]; x[i++] = m[ 6]^z[ 3]; x[i++] = m[ 9]^z[ 2]; x[i++] = m[ 8]^z[11]; x[i++] = z[12]^m[ 5]; x[i++] = z[ 4]^m[10];
x[i++] = z[ 0]^m[ 7]; x[i++] = z[ 8]^m[11]; x[i++] = m[ 7]^z[14]; x[i++] = m[12]^z[ 1]; x[i++] = m[ 5]^z[ 0]; x[i++] = m[ 8]^z[ 6]; x[i++] = z[13]^m[11]; x[i++] = z[ 3]^m[ 9];
x[i++] = z[15]^m[ 4]; x[i++] = z[ 8]^m[ 6]; x[i++] = z[ 2]^m[10]; x[i++] = m[ 6]^z[15]; x[i++] = m[11]^z[ 3]; x[i++] = m[12]^z[ 2]; x[i++] = m[10]^z[ 5]; x[i++] = z[14]^m[ 9];
x[i++] = z[ 0]^m[ 8]; x[i++] = z[13]^m[ 7]; x[i++] = z[ 1]^m[ 4]; x[i++] = z[10]^m[ 5]; x[i++] = m[10]^z[ 2]; x[i++] = m[ 8]^z[ 4]; x[i++] = m[ 7]^z[ 6]; x[i++] = m[ 9]^z[14];
x[i++] = z[ 8]^m[ 4]; x[i++] = z[ 7]^m[ 6]; x[i++] = z[ 1]^m[ 5]; x[i++] = z[15]^m[11]; x[i++] = z[ 3]^m[12]; x[i++] = m[ 4]^z[ 5]; x[i++] = m[ 6]^z[ 7]; x[i++] = m[ 8]^z[ 9];
x[i++] = z[ 4]^m[ 5]; x[i++] = z[ 6]^m[ 7];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_x, x, i*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
} }
/* ############################################################################################################################### */ /* ############################################################################################################################### */
@ -436,6 +355,8 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
uint32_t *pnonce = &pdata[DCR_NONCE_OFT32]; uint32_t *pnonce = &pdata[DCR_NONCE_OFT32];
const uint32_t first_nonce = *pnonce; const uint32_t first_nonce = *pnonce;
const uint32_t targetHigh = opt_benchmark ? 0x1ULL : ptarget[6];
const int dev_id = device_map[thr_id]; const int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25; int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25;
if (device_sm[dev_id] < 350) intensity = 22; if (device_sm[dev_id] < 350) intensity = 22;
@ -443,7 +364,7 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity); uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce); if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB)); const dim3 grid((throughput + TPB-1)/(TPB));
const dim3 block(TPB); const dim3 block(TPB);
if (opt_benchmark) { if (opt_benchmark) {
@ -465,7 +386,7 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
} }
memcpy(endiandata, pdata, 180); memcpy(endiandata, pdata, 180);
decred_cpu_setBlock_52(thr_id, endiandata, &pdata[32]); decred_cpu_setBlock_52(endiandata);
h_resNonce[thr_id][0] = 1; h_resNonce[thr_id][0] = 1;
do { do {
@ -473,7 +394,7 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t)); cudaMemset(d_resNonce[thr_id], 0x00, sizeof(uint32_t));
// GPU HASH // GPU HASH
decred_gpu_hash_nonce <<<grid, block>>> (throughput, (*pnonce), d_resNonce[thr_id]); decred_gpu_hash_nonce <<<grid, block>>> (throughput, (*pnonce), d_resNonce[thr_id], targetHigh);
cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (h_resNonce[thr_id][0]) if (h_resNonce[thr_id][0])
@ -482,26 +403,26 @@ extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce
for(uint32_t i=1; i <= h_resNonce[thr_id][0]; i++) for(uint32_t i=1; i <= h_resNonce[thr_id][0]; i++)
{ {
uint32_t vhash64[8]; uint32_t _ALIGN(64) vhash[8];
be32enc(&endiandata[DCR_NONCE_OFT32], h_resNonce[thr_id][i]); be32enc(&endiandata[DCR_NONCE_OFT32], h_resNonce[thr_id][i]);
decred_hash(vhash64, endiandata); decred_hash(vhash, endiandata);
if (vhash64[6] <= ptarget[6] && fulltest(vhash64, ptarget)) if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget))
{ {
int rc = 1; int rc = 1;
work_set_target_ratio(work, vhash64); work_set_target_ratio(work, vhash);
*hashes_done = (*pnonce) - first_nonce + throughput; *hashes_done = (*pnonce) - first_nonce + throughput;
work->nonces[0] = swab32(h_resNonce[thr_id][i]); work->nonces[0] = swab32(h_resNonce[thr_id][i]);
// search for another nonce // search for another nonce
for(uint32_t j=i+1; j <= h_resNonce[thr_id][0]; j++) for(uint32_t j=i+1; j <= h_resNonce[thr_id][0]; j++)
{ {
be32enc(&endiandata[DCR_NONCE_OFT32], h_resNonce[thr_id][j]); be32enc(&endiandata[DCR_NONCE_OFT32], h_resNonce[thr_id][j]);
decred_hash(vhash64, endiandata); decred_hash(vhash, endiandata);
if (vhash64[6] <= ptarget[6] && fulltest(vhash64, ptarget)){ if (vhash[6] <= ptarget[6] && fulltest(vhash, ptarget)){
work->nonces[1] = swab32(h_resNonce[thr_id][j]); work->nonces[1] = swab32(h_resNonce[thr_id][j]);
if(!opt_quiet) if(!opt_quiet)
gpulog(LOG_NOTICE, thr_id, "second nonce found %u / %08x - %u / %08x", i, work->nonces[0], j, work->nonces[1]); gpulog(LOG_NOTICE, thr_id, "second nonce found %u / %08x - %u / %08x", i, work->nonces[0], j, work->nonces[1]);
if(bn_hash_target_ratio(vhash64, ptarget) > work->shareratio) { if(bn_hash_target_ratio(vhash, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhash64); work_set_target_ratio(work, vhash);
xchg(work->nonces[1], work->nonces[0]); xchg(work->nonces[1], work->nonces[0]);
} }
rc = 2; rc = 2;