Christian Buchner
11 years ago
16 changed files with 3020 additions and 1354 deletions
@ -0,0 +1,292 @@
@@ -0,0 +1,292 @@
|
||||
|
||||
extern "C" |
||||
{ |
||||
#include "sph/sph_blake.h" |
||||
#include "sph/sph_bmw.h" |
||||
#include "sph/sph_groestl.h" |
||||
#include "sph/sph_skein.h" |
||||
#include "sph/sph_jh.h" |
||||
#include "sph/sph_keccak.h" |
||||
#include "miner.h" |
||||
} |
||||
|
||||
#include <stdint.h> |
||||
|
||||
// aus cpu-miner.c |
||||
extern int device_map[8]; |
||||
|
||||
// Speicher für Input/Output der verketteten Hashfunktionen |
||||
static uint32_t *d_hash[8]; |
||||
|
||||
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes |
||||
static uint32_t *d_animeNonces[8]; |
||||
static uint32_t *d_branch1Nonces[8]; |
||||
static uint32_t *d_branch2Nonces[8]; |
||||
static uint32_t *d_branch3Nonces[8]; |
||||
|
||||
extern void quark_blake512_cpu_init(int thr_id, int threads); |
||||
extern void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_bmw512_cpu_init(int thr_id, int threads); |
||||
extern void quark_bmw512_cpu_setBlock_80(void *pdata); |
||||
extern void quark_bmw512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order); |
||||
extern void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order); |
||||
|
||||
extern void quark_groestl512_cpu_init(int thr_id, int threads); |
||||
extern void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
extern void quark_doublegroestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_skein512_cpu_init(int thr_id, int threads); |
||||
extern void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_keccak512_cpu_init(int thr_id, int threads); |
||||
extern void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_jh512_cpu_init(int thr_id, int threads); |
||||
extern void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_check_cpu_init(int thr_id, int threads); |
||||
extern void quark_check_cpu_setTarget(const void *ptarget); |
||||
extern uint32_t quark_check_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order); |
||||
|
||||
extern void quark_compactTest_cpu_init(int thr_id, int threads); |
||||
extern void quark_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
uint32_t *d_nonces2, size_t *nrm2, |
||||
int order); |
||||
extern void quark_compactTest_single_false_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
int order); |
||||
|
||||
// Original Quarkhash Funktion aus einem miner Quelltext |
||||
inline void animehash(void *state, const void *input) |
||||
{ |
||||
sph_blake512_context ctx_blake; |
||||
sph_bmw512_context ctx_bmw; |
||||
sph_groestl512_context ctx_groestl; |
||||
sph_jh512_context ctx_jh; |
||||
sph_keccak512_context ctx_keccak; |
||||
sph_skein512_context ctx_skein; |
||||
|
||||
unsigned char hash[64]; |
||||
|
||||
sph_bmw512_init(&ctx_bmw); |
||||
// ZBMW; |
||||
sph_bmw512 (&ctx_bmw, (const void*) input, 80); |
||||
sph_bmw512_close(&ctx_bmw, (void*) hash); |
||||
|
||||
sph_blake512_init(&ctx_blake); |
||||
// ZBLAKE; |
||||
sph_blake512 (&ctx_blake, hash, 64); |
||||
sph_blake512_close(&ctx_blake, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_groestl512_init(&ctx_groestl); |
||||
// ZGROESTL; |
||||
sph_groestl512 (&ctx_groestl, (const void*) hash, 64); |
||||
sph_groestl512_close(&ctx_groestl, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_skein512_init(&ctx_skein); |
||||
// ZSKEIN; |
||||
sph_skein512 (&ctx_skein, (const void*) hash, 64); |
||||
sph_skein512_close(&ctx_skein, (void*) hash); |
||||
} |
||||
|
||||
sph_groestl512_init(&ctx_groestl); |
||||
// ZGROESTL; |
||||
sph_groestl512 (&ctx_groestl, (const void*) hash, 64); |
||||
sph_groestl512_close(&ctx_groestl, (void*) hash); |
||||
|
||||
sph_jh512_init(&ctx_jh); |
||||
// ZJH; |
||||
sph_jh512 (&ctx_jh, (const void*) hash, 64); |
||||
sph_jh512_close(&ctx_jh, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_blake512_init(&ctx_blake); |
||||
// ZBLAKE; |
||||
sph_blake512 (&ctx_blake, (const void*) hash, 64); |
||||
sph_blake512_close(&ctx_blake, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_bmw512_init(&ctx_bmw); |
||||
// ZBMW; |
||||
sph_bmw512 (&ctx_bmw, (const void*) hash, 64); |
||||
sph_bmw512_close(&ctx_bmw, (void*) hash); |
||||
} |
||||
|
||||
sph_keccak512_init(&ctx_keccak); |
||||
// ZKECCAK; |
||||
sph_keccak512 (&ctx_keccak, (const void*) hash, 64); |
||||
sph_keccak512_close(&ctx_keccak, (void*) hash); |
||||
|
||||
sph_skein512_init(&ctx_skein); |
||||
// SKEIN; |
||||
sph_skein512 (&ctx_skein, (const void*) hash, 64); |
||||
sph_skein512_close(&ctx_skein, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_keccak512_init(&ctx_keccak); |
||||
// ZKECCAK; |
||||
sph_keccak512 (&ctx_keccak, (const void*) hash, 64); |
||||
sph_keccak512_close(&ctx_keccak, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_jh512_init(&ctx_jh); |
||||
// ZJH; |
||||
sph_jh512 (&ctx_jh, (const void*) hash, 64); |
||||
sph_jh512_close(&ctx_jh, (void*) hash); |
||||
} |
||||
|
||||
memcpy(state, hash, 32); |
||||
} |
||||
|
||||
|
||||
struct HashPredicate |
||||
{ |
||||
HashPredicate(uint32_t *hashes, uint32_t startNonce) : |
||||
m_hashes(hashes), |
||||
m_startNonce(startNonce) |
||||
{ } |
||||
|
||||
__device__ |
||||
bool operator()(const uint32_t x) |
||||
{ |
||||
uint32_t *hash = &m_hashes[(x - m_startNonce)*16]; |
||||
return hash[0] & 0x8; |
||||
} |
||||
|
||||
uint32_t *m_hashes; |
||||
uint32_t m_startNonce; |
||||
}; |
||||
|
||||
extern bool opt_benchmark; |
||||
|
||||
extern "C" int scanhash_anime(int thr_id, uint32_t *pdata, |
||||
const uint32_t *ptarget, uint32_t max_nonce, |
||||
unsigned long *hashes_done) |
||||
{ |
||||
const uint32_t first_nonce = pdata[19]; |
||||
|
||||
// TODO: entfernen für eine Release! Ist nur zum Testen! |
||||
if (opt_benchmark) |
||||
((uint32_t*)ptarget)[7] = 0x00000f; |
||||
|
||||
const uint32_t Htarg = ptarget[7]; |
||||
|
||||
const int throughput = 256*2048; // 100; |
||||
|
||||
static bool init[8] = {0,0,0,0,0,0,0,0}; |
||||
if (!init[thr_id]) |
||||
{ |
||||
cudaSetDevice(device_map[thr_id]); |
||||
|
||||
// Konstanten kopieren, Speicher belegen |
||||
cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput); |
||||
quark_blake512_cpu_init(thr_id, throughput); |
||||
quark_groestl512_cpu_init(thr_id, throughput); |
||||
quark_skein512_cpu_init(thr_id, throughput); |
||||
quark_bmw512_cpu_init(thr_id, throughput); |
||||
quark_keccak512_cpu_init(thr_id, throughput); |
||||
quark_jh512_cpu_init(thr_id, throughput); |
||||
quark_check_cpu_init(thr_id, throughput); |
||||
quark_compactTest_cpu_init(thr_id, throughput); |
||||
cudaMalloc(&d_animeNonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
init[thr_id] = true; |
||||
} |
||||
|
||||
uint32_t endiandata[20]; |
||||
for (int k=0; k < 20; k++) |
||||
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); |
||||
|
||||
quark_bmw512_cpu_setBlock_80((void*)endiandata); |
||||
quark_check_cpu_setTarget(ptarget); |
||||
|
||||
do { |
||||
int order = 0; |
||||
size_t nrm1=0, nrm2=0, nrm3=0; |
||||
|
||||
// erstes BMW512 Hash mit CUDA |
||||
quark_bmw512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Blake512 |
||||
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); |
||||
|
||||
quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL, |
||||
d_branch3Nonces[thr_id], &nrm3, |
||||
order++); |
||||
|
||||
// nur den Skein Branch weiterverfolgen |
||||
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Groestl512 |
||||
quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für JH512 |
||||
quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) |
||||
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], |
||||
d_branch1Nonces[thr_id], &nrm1, |
||||
d_branch2Nonces[thr_id], &nrm2, |
||||
order++); |
||||
|
||||
// das ist der bedingte Branch für Blake512 |
||||
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der bedingte Branch für Bmw512 |
||||
quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Keccak512 |
||||
quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Skein512 |
||||
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) |
||||
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], |
||||
d_branch1Nonces[thr_id], &nrm1, |
||||
d_branch2Nonces[thr_id], &nrm2, |
||||
order++); |
||||
|
||||
// das ist der bedingte Branch für Keccak512 |
||||
quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der bedingte Branch für JH512 |
||||
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// Scan nach Gewinner Hashes auf der GPU |
||||
uint32_t foundNonce = quark_check_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
if (foundNonce != 0xffffffff) |
||||
{ |
||||
uint32_t vhash64[8]; |
||||
be32enc(&endiandata[19], foundNonce); |
||||
animehash(vhash64, endiandata); |
||||
|
||||
if ((vhash64[7]<=Htarg) && fulltest(vhash64, ptarget)) { |
||||
|
||||
pdata[19] = foundNonce; |
||||
*hashes_done = (foundNonce - first_nonce + 1)/2; |
||||
return 1; |
||||
} else { |
||||
applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU!", thr_id, foundNonce); |
||||
} |
||||
} |
||||
|
||||
pdata[19] += throughput; |
||||
|
||||
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
||||
|
||||
*hashes_done = (pdata[19] - first_nonce + 1)/2; |
||||
return 0; |
||||
} |
@ -0,0 +1,473 @@
@@ -0,0 +1,473 @@
|
||||
#if 1 |
||||
|
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
|
||||
// Endian Drehung für 32 Bit Typen |
||||
/* |
||||
static __device__ uint32_t cuda_swab32(uint32_t x) |
||||
{ |
||||
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) |
||||
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); |
||||
} |
||||
*/ |
||||
static __device__ uint32_t cuda_swab32(uint32_t x) |
||||
{ |
||||
return __byte_perm(x, 0, 0x0123); |
||||
} |
||||
// Endian Drehung für 64 Bit Typen |
||||
static __device__ unsigned long long cuda_swab64(unsigned long long x) { |
||||
uint32_t h = (x >> 32); |
||||
uint32_t l = (x & 0xFFFFFFFFULL); |
||||
return (((unsigned long long)cuda_swab32(l)) << 32) | ((unsigned long long)cuda_swab32(h)); |
||||
} |
||||
|
||||
// das Hi Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t HIWORD(const unsigned long long &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2hiint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x >> 32); |
||||
#endif |
||||
} |
||||
|
||||
// das Hi Word in einem 64 Bit Typen ersetzen |
||||
static __device__ unsigned long long REPLACE_HIWORD(const unsigned long long &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFFULL) | (((unsigned long long)y) << 32ULL); |
||||
} |
||||
|
||||
// das Lo Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t LOWORD(const unsigned long long &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2loint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x & 0xFFFFFFFFULL); |
||||
#endif |
||||
} |
||||
|
||||
static __device__ unsigned long long MAKE_ULONGLONG(uint32_t LO, uint32_t HI) |
||||
{ |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return __double_as_longlong(__hiloint2double(HI, LO)); |
||||
#else |
||||
return (unsigned long long)LO | (((unsigned long long)HI) << 32ULL); |
||||
#endif |
||||
} |
||||
|
||||
// das Lo Word in einem 64 Bit Typen ersetzen |
||||
static __device__ unsigned long long REPLACE_LOWORD(const unsigned long long &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFF00000000ULL) | ((unsigned long long)y); |
||||
} |
||||
|
||||
// der Versuch, einen Wrapper für einen aus 32 Bit Registern zusammengesetzten uin64_t Typen zu entferfen... |
||||
#if 1 |
||||
typedef unsigned long long uint64_t; |
||||
#else |
||||
typedef class uint64 |
||||
{ |
||||
public: |
||||
__device__ uint64() |
||||
{ |
||||
} |
||||
__device__ uint64(unsigned long long init) |
||||
{ |
||||
val = make_uint2( LOWORD(init), HIWORD(init) ); |
||||
} |
||||
__device__ uint64(uint32_t lo, uint32_t hi) |
||||
{ |
||||
val = make_uint2( lo, hi ); |
||||
} |
||||
__device__ const uint64 operator^(uint64 const& rhs) const |
||||
{ |
||||
return uint64(val.x ^ rhs.val.x, val.y ^ rhs.val.y); |
||||
} |
||||
__device__ const uint64 operator|(uint64 const& rhs) const |
||||
{ |
||||
return uint64(val.x | rhs.val.x, val.y | rhs.val.y); |
||||
} |
||||
__device__ const uint64 operator+(unsigned long long const& rhs) const |
||||
{ |
||||
return *this+uint64(rhs); |
||||
} |
||||
__device__ const uint64 operator+(uint64 const& rhs) const |
||||
{ |
||||
uint64 res; |
||||
asm ("add.cc.u32 %0, %2, %4;\n\t" |
||||
"addc.cc.u32 %1, %3, %5;\n\t" |
||||
: "=r"(res.val.x), "=r"(res.val.y) |
||||
: "r"( val.x), "r"( val.y), |
||||
"r"(rhs.val.x), "r"(rhs.val.y)); |
||||
return res; |
||||
} |
||||
__device__ const uint64 operator-(uint64 const& rhs) const |
||||
{ |
||||
uint64 res; |
||||
asm ("sub.cc.u32 %0, %2, %4;\n\t" |
||||
"subc.cc.u32 %1, %3, %5;\n\t" |
||||
: "=r"(res.val.x), "=r"(res.val.y) |
||||
: "r"( val.x), "r"( val.y), |
||||
"r"(rhs.val.x), "r"(rhs.val.y)); |
||||
return res; |
||||
} |
||||
__device__ const uint64 operator<<(int n) const |
||||
{ |
||||
return uint64(unsigned long long(*this)<<n); |
||||
} |
||||
__device__ const uint64 operator>>(int n) const |
||||
{ |
||||
return uint64(unsigned long long(*this)>>n); |
||||
} |
||||
__device__ operator unsigned long long() const |
||||
{ |
||||
return MAKE_ULONGLONG(val.x, val.y); |
||||
} |
||||
uint2 val; |
||||
} uint64_t; |
||||
#endif |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// die Message it Padding zur Berechnung auf der GPU |
||||
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) |
||||
|
||||
#define SPH_C64(x) ((uint64_t)(x ## ULL)) |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt |
||||
#if __CUDA_ARCH__ >= 350 |
||||
__forceinline__ __device__ uint64_t ROTL64(const uint64_t value, const int offset) { |
||||
uint2 result; |
||||
if(offset >= 32) { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
} else { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
} |
||||
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
||||
} |
||||
#else |
||||
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) |
||||
#endif |
||||
#define SHL(x, n) ((x) << (n)) |
||||
#define SHR(x, n) ((x) >> (n)) |
||||
|
||||
#define CONST_EXP2 q[i+0] + ROTL64(q[i+1], 5) + q[i+2] + ROTL64(q[i+3], 11) + \ |
||||
q[i+4] + ROTL64(q[i+5], 27) + q[i+6] + ROTL64(q[i+7], 32) + \ |
||||
q[i+8] + ROTL64(q[i+9], 37) + q[i+10] + ROTL64(q[i+11], 43) + \ |
||||
q[i+12] + ROTL64(q[i+13], 53) + (SHR(q[i+14],1) ^ q[i+14]) + (SHR(q[i+15],2) ^ q[i+15]) |
||||
|
||||
__device__ void Compression512(uint64_t *msg, uint64_t *hash) |
||||
{ |
||||
// Compression ref. implementation |
||||
uint64_t tmp; |
||||
uint64_t q[32]; |
||||
|
||||
tmp = (msg[ 5] ^ hash[ 5]) - (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]) + (msg[14] ^ hash[14]); |
||||
q[0] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[1]; |
||||
tmp = (msg[ 6] ^ hash[ 6]) - (msg[ 8] ^ hash[ 8]) + (msg[11] ^ hash[11]) + (msg[14] ^ hash[14]) - (msg[15] ^ hash[15]); |
||||
q[1] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[2]; |
||||
tmp = (msg[ 0] ^ hash[ 0]) + (msg[ 7] ^ hash[ 7]) + (msg[ 9] ^ hash[ 9]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]); |
||||
q[2] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[3]; |
||||
tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 1] ^ hash[ 1]) + (msg[ 8] ^ hash[ 8]) - (msg[10] ^ hash[10]) + (msg[13] ^ hash[13]); |
||||
q[3] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[4]; |
||||
tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 2] ^ hash[ 2]) + (msg[ 9] ^ hash[ 9]) - (msg[11] ^ hash[11]) - (msg[14] ^ hash[14]); |
||||
q[4] = (SHR(tmp, 1) ^ tmp) + hash[5]; |
||||
tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 2] ^ hash[ 2]) + (msg[10] ^ hash[10]) - (msg[12] ^ hash[12]) + (msg[15] ^ hash[15]); |
||||
q[5] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[6]; |
||||
tmp = (msg[ 4] ^ hash[ 4]) - (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) - (msg[11] ^ hash[11]) + (msg[13] ^ hash[13]); |
||||
q[6] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[7]; |
||||
tmp = (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 5] ^ hash[ 5]) - (msg[12] ^ hash[12]) - (msg[14] ^ hash[14]); |
||||
q[7] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[8]; |
||||
tmp = (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) - (msg[ 6] ^ hash[ 6]) + (msg[13] ^ hash[13]) - (msg[15] ^ hash[15]); |
||||
q[8] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[9]; |
||||
tmp = (msg[ 0] ^ hash[ 0]) - (msg[ 3] ^ hash[ 3]) + (msg[ 6] ^ hash[ 6]) - (msg[ 7] ^ hash[ 7]) + (msg[14] ^ hash[14]); |
||||
q[9] = (SHR(tmp, 1) ^ tmp) + hash[10]; |
||||
tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 1] ^ hash[ 1]) - (msg[ 4] ^ hash[ 4]) - (msg[ 7] ^ hash[ 7]) + (msg[15] ^ hash[15]); |
||||
q[10] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[11]; |
||||
tmp = (msg[ 8] ^ hash[ 8]) - (msg[ 0] ^ hash[ 0]) - (msg[ 2] ^ hash[ 2]) - (msg[ 5] ^ hash[ 5]) + (msg[ 9] ^ hash[ 9]); |
||||
q[11] = (SHR(tmp, 1) ^ SHL(tmp, 2) ^ ROTL64(tmp, 13) ^ ROTL64(tmp, 43)) + hash[12]; |
||||
tmp = (msg[ 1] ^ hash[ 1]) + (msg[ 3] ^ hash[ 3]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[10] ^ hash[10]); |
||||
q[12] = (SHR(tmp, 2) ^ SHL(tmp, 1) ^ ROTL64(tmp, 19) ^ ROTL64(tmp, 53)) + hash[13]; |
||||
tmp = (msg[ 2] ^ hash[ 2]) + (msg[ 4] ^ hash[ 4]) + (msg[ 7] ^ hash[ 7]) + (msg[10] ^ hash[10]) + (msg[11] ^ hash[11]); |
||||
q[13] = (SHR(tmp, 2) ^ SHL(tmp, 2) ^ ROTL64(tmp, 28) ^ ROTL64(tmp, 59)) + hash[14]; |
||||
tmp = (msg[ 3] ^ hash[ 3]) - (msg[ 5] ^ hash[ 5]) + (msg[ 8] ^ hash[ 8]) - (msg[11] ^ hash[11]) - (msg[12] ^ hash[12]); |
||||
q[14] = (SHR(tmp, 1) ^ tmp) + hash[15]; |
||||
tmp = (msg[12] ^ hash[12]) - (msg[ 4] ^ hash[ 4]) - (msg[ 6] ^ hash[ 6]) - (msg[ 9] ^ hash[ 9]) + (msg[13] ^ hash[13]); |
||||
q[15] = (SHR(tmp, 1) ^ SHL(tmp, 3) ^ ROTL64(tmp, 4) ^ ROTL64(tmp, 37)) + hash[0]; |
||||
|
||||
// Expand 1 |
||||
#pragma unroll 2 |
||||
for(int i=0;i<2;i++) |
||||
{ |
||||
q[i+16] = |
||||
(SHR(q[i], 1) ^ SHL(q[i], 2) ^ ROTL64(q[i], 13) ^ ROTL64(q[i], 43)) + |
||||
(SHR(q[i+1], 2) ^ SHL(q[i+1], 1) ^ ROTL64(q[i+1], 19) ^ ROTL64(q[i+1], 53)) + |
||||
(SHR(q[i+2], 2) ^ SHL(q[i+2], 2) ^ ROTL64(q[i+2], 28) ^ ROTL64(q[i+2], 59)) + |
||||
(SHR(q[i+3], 1) ^ SHL(q[i+3], 3) ^ ROTL64(q[i+3], 4) ^ ROTL64(q[i+3], 37)) + |
||||
(SHR(q[i+4], 1) ^ SHL(q[i+4], 2) ^ ROTL64(q[i+4], 13) ^ ROTL64(q[i+4], 43)) + |
||||
(SHR(q[i+5], 2) ^ SHL(q[i+5], 1) ^ ROTL64(q[i+5], 19) ^ ROTL64(q[i+5], 53)) + |
||||
(SHR(q[i+6], 2) ^ SHL(q[i+6], 2) ^ ROTL64(q[i+6], 28) ^ ROTL64(q[i+6], 59)) + |
||||
(SHR(q[i+7], 1) ^ SHL(q[i+7], 3) ^ ROTL64(q[i+7], 4) ^ ROTL64(q[i+7], 37)) + |
||||
(SHR(q[i+8], 1) ^ SHL(q[i+8], 2) ^ ROTL64(q[i+8], 13) ^ ROTL64(q[i+8], 43)) + |
||||
(SHR(q[i+9], 2) ^ SHL(q[i+9], 1) ^ ROTL64(q[i+9], 19) ^ ROTL64(q[i+9], 53)) + |
||||
(SHR(q[i+10], 2) ^ SHL(q[i+10], 2) ^ ROTL64(q[i+10], 28) ^ ROTL64(q[i+10], 59)) + |
||||
(SHR(q[i+11], 1) ^ SHL(q[i+11], 3) ^ ROTL64(q[i+11], 4) ^ ROTL64(q[i+11], 37)) + |
||||
(SHR(q[i+12], 1) ^ SHL(q[i+12], 2) ^ ROTL64(q[i+12], 13) ^ ROTL64(q[i+12], 43)) + |
||||
(SHR(q[i+13], 2) ^ SHL(q[i+13], 1) ^ ROTL64(q[i+13], 19) ^ ROTL64(q[i+13], 53)) + |
||||
(SHR(q[i+14], 2) ^ SHL(q[i+14], 2) ^ ROTL64(q[i+14], 28) ^ ROTL64(q[i+14], 59)) + |
||||
(SHR(q[i+15], 1) ^ SHL(q[i+15], 3) ^ ROTL64(q[i+15], 4) ^ ROTL64(q[i+15], 37)) + |
||||
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + |
||||
ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]); |
||||
} |
||||
|
||||
#pragma unroll 4 |
||||
for(int i=2;i<6;i++) { |
||||
q[i+16] = CONST_EXP2 + |
||||
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + |
||||
ROTL64(msg[i+3], i+4) - ROTL64(msg[i+10], i+11) ) ^ hash[i+7]); |
||||
} |
||||
#pragma unroll 3 |
||||
for(int i=6;i<9;i++) { |
||||
q[i+16] = CONST_EXP2 + |
||||
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + |
||||
ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i+7]); |
||||
} |
||||
#pragma unroll 4 |
||||
for(int i=9;i<13;i++) { |
||||
q[i+16] = CONST_EXP2 + |
||||
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + |
||||
ROTL64(msg[i+3], i+4) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]); |
||||
} |
||||
#pragma unroll 3 |
||||
for(int i=13;i<16;i++) { |
||||
q[i+16] = CONST_EXP2 + |
||||
(( ((i+16)*(0x0555555555555555ull)) + ROTL64(msg[i], i+1) + |
||||
ROTL64(msg[i-13], (i-13)+1) - ROTL64(msg[i-6], (i-6)+1) ) ^ hash[i-9]); |
||||
} |
||||
|
||||
uint64_t XL64 = q[16]^q[17]^q[18]^q[19]^q[20]^q[21]^q[22]^q[23]; |
||||
uint64_t XH64 = XL64^q[24]^q[25]^q[26]^q[27]^q[28]^q[29]^q[30]^q[31]; |
||||
|
||||
hash[0] = (SHL(XH64, 5) ^ SHR(q[16],5) ^ msg[ 0]) + ( XL64 ^ q[24] ^ q[ 0]); |
||||
hash[1] = (SHR(XH64, 7) ^ SHL(q[17],8) ^ msg[ 1]) + ( XL64 ^ q[25] ^ q[ 1]); |
||||
hash[2] = (SHR(XH64, 5) ^ SHL(q[18],5) ^ msg[ 2]) + ( XL64 ^ q[26] ^ q[ 2]); |
||||
hash[3] = (SHR(XH64, 1) ^ SHL(q[19],5) ^ msg[ 3]) + ( XL64 ^ q[27] ^ q[ 3]); |
||||
hash[4] = (SHR(XH64, 3) ^ q[20] ^ msg[ 4]) + ( XL64 ^ q[28] ^ q[ 4]); |
||||
hash[5] = (SHL(XH64, 6) ^ SHR(q[21],6) ^ msg[ 5]) + ( XL64 ^ q[29] ^ q[ 5]); |
||||
hash[6] = (SHR(XH64, 4) ^ SHL(q[22],6) ^ msg[ 6]) + ( XL64 ^ q[30] ^ q[ 6]); |
||||
hash[7] = (SHR(XH64,11) ^ SHL(q[23],2) ^ msg[ 7]) + ( XL64 ^ q[31] ^ q[ 7]); |
||||
|
||||
hash[ 8] = ROTL64(hash[4], 9) + ( XH64 ^ q[24] ^ msg[ 8]) + (SHL(XL64,8) ^ q[23] ^ q[ 8]); |
||||
hash[ 9] = ROTL64(hash[5],10) + ( XH64 ^ q[25] ^ msg[ 9]) + (SHR(XL64,6) ^ q[16] ^ q[ 9]); |
||||
hash[10] = ROTL64(hash[6],11) + ( XH64 ^ q[26] ^ msg[10]) + (SHL(XL64,6) ^ q[17] ^ q[10]); |
||||
hash[11] = ROTL64(hash[7],12) + ( XH64 ^ q[27] ^ msg[11]) + (SHL(XL64,4) ^ q[18] ^ q[11]); |
||||
hash[12] = ROTL64(hash[0],13) + ( XH64 ^ q[28] ^ msg[12]) + (SHR(XL64,3) ^ q[19] ^ q[12]); |
||||
hash[13] = ROTL64(hash[1],14) + ( XH64 ^ q[29] ^ msg[13]) + (SHR(XL64,4) ^ q[20] ^ q[13]); |
||||
hash[14] = ROTL64(hash[2],15) + ( XH64 ^ q[30] ^ msg[14]) + (SHR(XL64,7) ^ q[21] ^ q[14]); |
||||
hash[15] = ROTL64(hash[3],16) + ( XH64 ^ q[31] ^ msg[15]) + (SHR(XL64,2) ^ q[22] ^ q[15]); |
||||
} |
||||
static __constant__ uint64_t d_constMem[16]; |
||||
static uint64_t h_constMem[16] = { |
||||
SPH_C64(0x8081828384858687), |
||||
SPH_C64(0x88898A8B8C8D8E8F), |
||||
SPH_C64(0x9091929394959697), |
||||
SPH_C64(0x98999A9B9C9D9E9F), |
||||
SPH_C64(0xA0A1A2A3A4A5A6A7), |
||||
SPH_C64(0xA8A9AAABACADAEAF), |
||||
SPH_C64(0xB0B1B2B3B4B5B6B7), |
||||
SPH_C64(0xB8B9BABBBCBDBEBF), |
||||
SPH_C64(0xC0C1C2C3C4C5C6C7), |
||||
SPH_C64(0xC8C9CACBCCCDCECF), |
||||
SPH_C64(0xD0D1D2D3D4D5D6D7), |
||||
SPH_C64(0xD8D9DADBDCDDDEDF), |
||||
SPH_C64(0xE0E1E2E3E4E5E6E7), |
||||
SPH_C64(0xE8E9EAEBECEDEEEF), |
||||
SPH_C64(0xF0F1F2F3F4F5F6F7), |
||||
SPH_C64(0xF8F9FAFBFCFDFEFF) |
||||
}; |
||||
|
||||
__global__ void quark_bmw512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint64_t *inpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
// Init |
||||
uint64_t h[16]; |
||||
/* |
||||
h[ 0] = SPH_C64(0x8081828384858687); |
||||
h[ 1] = SPH_C64(0x88898A8B8C8D8E8F); |
||||
h[ 2] = SPH_C64(0x9091929394959697); |
||||
h[ 3] = SPH_C64(0x98999A9B9C9D9E9F); |
||||
h[ 4] = SPH_C64(0xA0A1A2A3A4A5A6A7); |
||||
h[ 5] = SPH_C64(0xA8A9AAABACADAEAF); |
||||
h[ 6] = SPH_C64(0xB0B1B2B3B4B5B6B7); |
||||
h[ 7] = SPH_C64(0xB8B9BABBBCBDBEBF); |
||||
h[ 8] = SPH_C64(0xC0C1C2C3C4C5C6C7); |
||||
h[ 9] = SPH_C64(0xC8C9CACBCCCDCECF); |
||||
h[10] = SPH_C64(0xD0D1D2D3D4D5D6D7); |
||||
h[11] = SPH_C64(0xD8D9DADBDCDDDEDF); |
||||
h[12] = SPH_C64(0xE0E1E2E3E4E5E6E7); |
||||
h[13] = SPH_C64(0xE8E9EAEBECEDEEEF); |
||||
h[14] = SPH_C64(0xF0F1F2F3F4F5F6F7); |
||||
h[15] = SPH_C64(0xF8F9FAFBFCFDFEFF); |
||||
*/ |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
h[i] = d_constMem[i]; |
||||
// Nachricht kopieren (Achtung, die Nachricht hat 64 Byte, |
||||
// BMW arbeitet mit 128 Byte!!! |
||||
uint64_t message[16]; |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
message[i] = inpHash[i]; |
||||
#pragma unroll 6 |
||||
for(int i=9;i<15;i++) |
||||
message[i] = 0; |
||||
|
||||
// Padding einfügen (Byteorder?!?) |
||||
message[8] = SPH_C64(0x80); |
||||
// Länge (in Bits, d.h. 64 Byte * 8 = 512 Bits |
||||
message[15] = SPH_C64(512); |
||||
|
||||
// Compression 1 |
||||
Compression512(message, h); |
||||
|
||||
// Final |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i; |
||||
|
||||
Compression512(h, message); |
||||
|
||||
// fertig |
||||
uint64_t *outpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
outpHash[i] = message[i+8]; |
||||
} |
||||
} |
||||
|
||||
__global__ void quark_bmw512_gpu_hash_80(int threads, uint32_t startNounce, uint64_t *g_hash) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = startNounce + thread; |
||||
|
||||
// Init |
||||
uint64_t h[16]; |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
h[i] = d_constMem[i]; |
||||
|
||||
// Nachricht kopieren (Achtung, die Nachricht hat 64 Byte, |
||||
// BMW arbeitet mit 128 Byte!!! |
||||
uint64_t message[16]; |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
message[i] = c_PaddedMessage80[i]; |
||||
|
||||
// die Nounce durch die thread-spezifische ersetzen |
||||
message[9] = REPLACE_HIWORD(message[9], cuda_swab32(nounce)); |
||||
|
||||
// Compression 1 |
||||
Compression512(message, h); |
||||
|
||||
// Final |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
message[i] = 0xaaaaaaaaaaaaaaa0ull + (uint64_t)i; |
||||
|
||||
Compression512(h, message); |
||||
|
||||
// fertig |
||||
uint64_t *outpHash = &g_hash[8 * thread]; |
||||
|
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
outpHash[i] = message[i+8]; |
||||
} |
||||
} |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_bmw512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// nix zu tun ;-) |
||||
// jetzt schon :D |
||||
cudaMemcpyToSymbol( d_constMem, |
||||
h_constMem, |
||||
sizeof(h_constMem), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
// Bmw512 für 80 Byte grosse Eingangsdaten |
||||
__host__ void quark_bmw512_cpu_setBlock_80(void *pdata) |
||||
{ |
||||
// Message mit Padding bereitstellen |
||||
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. |
||||
unsigned char PaddedMessage[128]; |
||||
memcpy(PaddedMessage, pdata, 80); |
||||
memset(PaddedMessage+80, 0, 48); |
||||
uint64_t *message = (uint64_t*)PaddedMessage; |
||||
// Padding einfügen (Byteorder?!?) |
||||
message[10] = SPH_C64(0x80); |
||||
// Länge (in Bits, d.h. 80 Byte * 8 = 640 Bits |
||||
message[15] = SPH_C64(640); |
||||
|
||||
// die Message zur Berechnung auf der GPU |
||||
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_bmw512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
__host__ void quark_bmw512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_bmw512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
#endif |
@ -1,356 +1,358 @@
@@ -1,356 +1,358 @@
|
||||
#include <stdint.h> |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
typedef struct { |
||||
uint32_t x[8][4]; /*the 1024-bit state, ( x[i][0] || x[i][1] || x[i][2] || x[i][3] ) is the ith row of the state in the pseudocode*/ |
||||
uint32_t buffer[16]; /*the 512-bit message block to be hashed;*/ |
||||
} hashState; |
||||
|
||||
/*42 round constants, each round constant is 32-byte (256-bit)*/ |
||||
__constant__ uint32_t c_INIT_bitslice[8][4]; |
||||
__constant__ unsigned char c_E8_bitslice_roundconstant[42][32]; |
||||
|
||||
const uint32_t h_INIT_bitslice[8][4] = { |
||||
{ 0x964bd16f, 0x17aa003e, 0x052e6a63, 0x43d5157a}, |
||||
{ 0x8d5e228a, 0x0bef970c, 0x591234e9, 0x61c3b3f2}, |
||||
{ 0xc1a01d89, 0x1e806f53, 0x6b05a92a, 0x806d2bea}, |
||||
{ 0xdbcc8e58, 0xa6ba7520, 0x763a0fa9, 0xf73bf8ba}, |
||||
{ 0x05e66901, 0x694ae341, 0x8e8ab546, 0x5ae66f2e}, |
||||
{ 0xd0a74710, 0x243c84c1, 0xb1716e3b, 0x99c15a2d}, |
||||
{ 0xecf657cf, 0x56f8b19d, 0x7c8806a7, 0x56b11657}, |
||||
{ 0xdffcc2e3, 0xfb1785e6, 0x78465a54, 0x4bdd8ccc} }; |
||||
|
||||
const unsigned char h_E8_bitslice_roundconstant[42][32]={ |
||||
{0x72,0xd5,0xde,0xa2,0xdf,0x15,0xf8,0x67,0x7b,0x84,0x15,0xa,0xb7,0x23,0x15,0x57,0x81,0xab,0xd6,0x90,0x4d,0x5a,0x87,0xf6,0x4e,0x9f,0x4f,0xc5,0xc3,0xd1,0x2b,0x40}, |
||||
{0xea,0x98,0x3a,0xe0,0x5c,0x45,0xfa,0x9c,0x3,0xc5,0xd2,0x99,0x66,0xb2,0x99,0x9a,0x66,0x2,0x96,0xb4,0xf2,0xbb,0x53,0x8a,0xb5,0x56,0x14,0x1a,0x88,0xdb,0xa2,0x31}, |
||||
{0x3,0xa3,0x5a,0x5c,0x9a,0x19,0xe,0xdb,0x40,0x3f,0xb2,0xa,0x87,0xc1,0x44,0x10,0x1c,0x5,0x19,0x80,0x84,0x9e,0x95,0x1d,0x6f,0x33,0xeb,0xad,0x5e,0xe7,0xcd,0xdc}, |
||||
{0x10,0xba,0x13,0x92,0x2,0xbf,0x6b,0x41,0xdc,0x78,0x65,0x15,0xf7,0xbb,0x27,0xd0,0xa,0x2c,0x81,0x39,0x37,0xaa,0x78,0x50,0x3f,0x1a,0xbf,0xd2,0x41,0x0,0x91,0xd3}, |
||||
{0x42,0x2d,0x5a,0xd,0xf6,0xcc,0x7e,0x90,0xdd,0x62,0x9f,0x9c,0x92,0xc0,0x97,0xce,0x18,0x5c,0xa7,0xb,0xc7,0x2b,0x44,0xac,0xd1,0xdf,0x65,0xd6,0x63,0xc6,0xfc,0x23}, |
||||
{0x97,0x6e,0x6c,0x3,0x9e,0xe0,0xb8,0x1a,0x21,0x5,0x45,0x7e,0x44,0x6c,0xec,0xa8,0xee,0xf1,0x3,0xbb,0x5d,0x8e,0x61,0xfa,0xfd,0x96,0x97,0xb2,0x94,0x83,0x81,0x97}, |
||||
{0x4a,0x8e,0x85,0x37,0xdb,0x3,0x30,0x2f,0x2a,0x67,0x8d,0x2d,0xfb,0x9f,0x6a,0x95,0x8a,0xfe,0x73,0x81,0xf8,0xb8,0x69,0x6c,0x8a,0xc7,0x72,0x46,0xc0,0x7f,0x42,0x14}, |
||||
{0xc5,0xf4,0x15,0x8f,0xbd,0xc7,0x5e,0xc4,0x75,0x44,0x6f,0xa7,0x8f,0x11,0xbb,0x80,0x52,0xde,0x75,0xb7,0xae,0xe4,0x88,0xbc,0x82,0xb8,0x0,0x1e,0x98,0xa6,0xa3,0xf4}, |
||||
{0x8e,0xf4,0x8f,0x33,0xa9,0xa3,0x63,0x15,0xaa,0x5f,0x56,0x24,0xd5,0xb7,0xf9,0x89,0xb6,0xf1,0xed,0x20,0x7c,0x5a,0xe0,0xfd,0x36,0xca,0xe9,0x5a,0x6,0x42,0x2c,0x36}, |
||||
{0xce,0x29,0x35,0x43,0x4e,0xfe,0x98,0x3d,0x53,0x3a,0xf9,0x74,0x73,0x9a,0x4b,0xa7,0xd0,0xf5,0x1f,0x59,0x6f,0x4e,0x81,0x86,0xe,0x9d,0xad,0x81,0xaf,0xd8,0x5a,0x9f}, |
||||
{0xa7,0x5,0x6,0x67,0xee,0x34,0x62,0x6a,0x8b,0xb,0x28,0xbe,0x6e,0xb9,0x17,0x27,0x47,0x74,0x7,0x26,0xc6,0x80,0x10,0x3f,0xe0,0xa0,0x7e,0x6f,0xc6,0x7e,0x48,0x7b}, |
||||
{0xd,0x55,0xa,0xa5,0x4a,0xf8,0xa4,0xc0,0x91,0xe3,0xe7,0x9f,0x97,0x8e,0xf1,0x9e,0x86,0x76,0x72,0x81,0x50,0x60,0x8d,0xd4,0x7e,0x9e,0x5a,0x41,0xf3,0xe5,0xb0,0x62}, |
||||
{0xfc,0x9f,0x1f,0xec,0x40,0x54,0x20,0x7a,0xe3,0xe4,0x1a,0x0,0xce,0xf4,0xc9,0x84,0x4f,0xd7,0x94,0xf5,0x9d,0xfa,0x95,0xd8,0x55,0x2e,0x7e,0x11,0x24,0xc3,0x54,0xa5}, |
||||
{0x5b,0xdf,0x72,0x28,0xbd,0xfe,0x6e,0x28,0x78,0xf5,0x7f,0xe2,0xf,0xa5,0xc4,0xb2,0x5,0x89,0x7c,0xef,0xee,0x49,0xd3,0x2e,0x44,0x7e,0x93,0x85,0xeb,0x28,0x59,0x7f}, |
||||
{0x70,0x5f,0x69,0x37,0xb3,0x24,0x31,0x4a,0x5e,0x86,0x28,0xf1,0x1d,0xd6,0xe4,0x65,0xc7,0x1b,0x77,0x4,0x51,0xb9,0x20,0xe7,0x74,0xfe,0x43,0xe8,0x23,0xd4,0x87,0x8a}, |
||||
{0x7d,0x29,0xe8,0xa3,0x92,0x76,0x94,0xf2,0xdd,0xcb,0x7a,0x9,0x9b,0x30,0xd9,0xc1,0x1d,0x1b,0x30,0xfb,0x5b,0xdc,0x1b,0xe0,0xda,0x24,0x49,0x4f,0xf2,0x9c,0x82,0xbf}, |
||||
{0xa4,0xe7,0xba,0x31,0xb4,0x70,0xbf,0xff,0xd,0x32,0x44,0x5,0xde,0xf8,0xbc,0x48,0x3b,0xae,0xfc,0x32,0x53,0xbb,0xd3,0x39,0x45,0x9f,0xc3,0xc1,0xe0,0x29,0x8b,0xa0}, |
||||
{0xe5,0xc9,0x5,0xfd,0xf7,0xae,0x9,0xf,0x94,0x70,0x34,0x12,0x42,0x90,0xf1,0x34,0xa2,0x71,0xb7,0x1,0xe3,0x44,0xed,0x95,0xe9,0x3b,0x8e,0x36,0x4f,0x2f,0x98,0x4a}, |
||||
{0x88,0x40,0x1d,0x63,0xa0,0x6c,0xf6,0x15,0x47,0xc1,0x44,0x4b,0x87,0x52,0xaf,0xff,0x7e,0xbb,0x4a,0xf1,0xe2,0xa,0xc6,0x30,0x46,0x70,0xb6,0xc5,0xcc,0x6e,0x8c,0xe6}, |
||||
{0xa4,0xd5,0xa4,0x56,0xbd,0x4f,0xca,0x0,0xda,0x9d,0x84,0x4b,0xc8,0x3e,0x18,0xae,0x73,0x57,0xce,0x45,0x30,0x64,0xd1,0xad,0xe8,0xa6,0xce,0x68,0x14,0x5c,0x25,0x67}, |
||||
{0xa3,0xda,0x8c,0xf2,0xcb,0xe,0xe1,0x16,0x33,0xe9,0x6,0x58,0x9a,0x94,0x99,0x9a,0x1f,0x60,0xb2,0x20,0xc2,0x6f,0x84,0x7b,0xd1,0xce,0xac,0x7f,0xa0,0xd1,0x85,0x18}, |
||||
{0x32,0x59,0x5b,0xa1,0x8d,0xdd,0x19,0xd3,0x50,0x9a,0x1c,0xc0,0xaa,0xa5,0xb4,0x46,0x9f,0x3d,0x63,0x67,0xe4,0x4,0x6b,0xba,0xf6,0xca,0x19,0xab,0xb,0x56,0xee,0x7e}, |
||||
{0x1f,0xb1,0x79,0xea,0xa9,0x28,0x21,0x74,0xe9,0xbd,0xf7,0x35,0x3b,0x36,0x51,0xee,0x1d,0x57,0xac,0x5a,0x75,0x50,0xd3,0x76,0x3a,0x46,0xc2,0xfe,0xa3,0x7d,0x70,0x1}, |
||||
{0xf7,0x35,0xc1,0xaf,0x98,0xa4,0xd8,0x42,0x78,0xed,0xec,0x20,0x9e,0x6b,0x67,0x79,0x41,0x83,0x63,0x15,0xea,0x3a,0xdb,0xa8,0xfa,0xc3,0x3b,0x4d,0x32,0x83,0x2c,0x83}, |
||||
{0xa7,0x40,0x3b,0x1f,0x1c,0x27,0x47,0xf3,0x59,0x40,0xf0,0x34,0xb7,0x2d,0x76,0x9a,0xe7,0x3e,0x4e,0x6c,0xd2,0x21,0x4f,0xfd,0xb8,0xfd,0x8d,0x39,0xdc,0x57,0x59,0xef}, |
||||
{0x8d,0x9b,0xc,0x49,0x2b,0x49,0xeb,0xda,0x5b,0xa2,0xd7,0x49,0x68,0xf3,0x70,0xd,0x7d,0x3b,0xae,0xd0,0x7a,0x8d,0x55,0x84,0xf5,0xa5,0xe9,0xf0,0xe4,0xf8,0x8e,0x65}, |
||||
{0xa0,0xb8,0xa2,0xf4,0x36,0x10,0x3b,0x53,0xc,0xa8,0x7,0x9e,0x75,0x3e,0xec,0x5a,0x91,0x68,0x94,0x92,0x56,0xe8,0x88,0x4f,0x5b,0xb0,0x5c,0x55,0xf8,0xba,0xbc,0x4c}, |
||||
{0xe3,0xbb,0x3b,0x99,0xf3,0x87,0x94,0x7b,0x75,0xda,0xf4,0xd6,0x72,0x6b,0x1c,0x5d,0x64,0xae,0xac,0x28,0xdc,0x34,0xb3,0x6d,0x6c,0x34,0xa5,0x50,0xb8,0x28,0xdb,0x71}, |
||||
{0xf8,0x61,0xe2,0xf2,0x10,0x8d,0x51,0x2a,0xe3,0xdb,0x64,0x33,0x59,0xdd,0x75,0xfc,0x1c,0xac,0xbc,0xf1,0x43,0xce,0x3f,0xa2,0x67,0xbb,0xd1,0x3c,0x2,0xe8,0x43,0xb0}, |
||||
{0x33,0xa,0x5b,0xca,0x88,0x29,0xa1,0x75,0x7f,0x34,0x19,0x4d,0xb4,0x16,0x53,0x5c,0x92,0x3b,0x94,0xc3,0xe,0x79,0x4d,0x1e,0x79,0x74,0x75,0xd7,0xb6,0xee,0xaf,0x3f}, |
||||
{0xea,0xa8,0xd4,0xf7,0xbe,0x1a,0x39,0x21,0x5c,0xf4,0x7e,0x9,0x4c,0x23,0x27,0x51,0x26,0xa3,0x24,0x53,0xba,0x32,0x3c,0xd2,0x44,0xa3,0x17,0x4a,0x6d,0xa6,0xd5,0xad}, |
||||
{0xb5,0x1d,0x3e,0xa6,0xaf,0xf2,0xc9,0x8,0x83,0x59,0x3d,0x98,0x91,0x6b,0x3c,0x56,0x4c,0xf8,0x7c,0xa1,0x72,0x86,0x60,0x4d,0x46,0xe2,0x3e,0xcc,0x8,0x6e,0xc7,0xf6}, |
||||
{0x2f,0x98,0x33,0xb3,0xb1,0xbc,0x76,0x5e,0x2b,0xd6,0x66,0xa5,0xef,0xc4,0xe6,0x2a,0x6,0xf4,0xb6,0xe8,0xbe,0xc1,0xd4,0x36,0x74,0xee,0x82,0x15,0xbc,0xef,0x21,0x63}, |
||||
{0xfd,0xc1,0x4e,0xd,0xf4,0x53,0xc9,0x69,0xa7,0x7d,0x5a,0xc4,0x6,0x58,0x58,0x26,0x7e,0xc1,0x14,0x16,0x6,0xe0,0xfa,0x16,0x7e,0x90,0xaf,0x3d,0x28,0x63,0x9d,0x3f}, |
||||
{0xd2,0xc9,0xf2,0xe3,0x0,0x9b,0xd2,0xc,0x5f,0xaa,0xce,0x30,0xb7,0xd4,0xc,0x30,0x74,0x2a,0x51,0x16,0xf2,0xe0,0x32,0x98,0xd,0xeb,0x30,0xd8,0xe3,0xce,0xf8,0x9a}, |
||||
{0x4b,0xc5,0x9e,0x7b,0xb5,0xf1,0x79,0x92,0xff,0x51,0xe6,0x6e,0x4,0x86,0x68,0xd3,0x9b,0x23,0x4d,0x57,0xe6,0x96,0x67,0x31,0xcc,0xe6,0xa6,0xf3,0x17,0xa,0x75,0x5}, |
||||
{0xb1,0x76,0x81,0xd9,0x13,0x32,0x6c,0xce,0x3c,0x17,0x52,0x84,0xf8,0x5,0xa2,0x62,0xf4,0x2b,0xcb,0xb3,0x78,0x47,0x15,0x47,0xff,0x46,0x54,0x82,0x23,0x93,0x6a,0x48}, |
||||
{0x38,0xdf,0x58,0x7,0x4e,0x5e,0x65,0x65,0xf2,0xfc,0x7c,0x89,0xfc,0x86,0x50,0x8e,0x31,0x70,0x2e,0x44,0xd0,0xb,0xca,0x86,0xf0,0x40,0x9,0xa2,0x30,0x78,0x47,0x4e}, |
||||
{0x65,0xa0,0xee,0x39,0xd1,0xf7,0x38,0x83,0xf7,0x5e,0xe9,0x37,0xe4,0x2c,0x3a,0xbd,0x21,0x97,0xb2,0x26,0x1,0x13,0xf8,0x6f,0xa3,0x44,0xed,0xd1,0xef,0x9f,0xde,0xe7}, |
||||
{0x8b,0xa0,0xdf,0x15,0x76,0x25,0x92,0xd9,0x3c,0x85,0xf7,0xf6,0x12,0xdc,0x42,0xbe,0xd8,0xa7,0xec,0x7c,0xab,0x27,0xb0,0x7e,0x53,0x8d,0x7d,0xda,0xaa,0x3e,0xa8,0xde}, |
||||
{0xaa,0x25,0xce,0x93,0xbd,0x2,0x69,0xd8,0x5a,0xf6,0x43,0xfd,0x1a,0x73,0x8,0xf9,0xc0,0x5f,0xef,0xda,0x17,0x4a,0x19,0xa5,0x97,0x4d,0x66,0x33,0x4c,0xfd,0x21,0x6a}, |
||||
{0x35,0xb4,0x98,0x31,0xdb,0x41,0x15,0x70,0xea,0x1e,0xf,0xbb,0xed,0xcd,0x54,0x9b,0x9a,0xd0,0x63,0xa1,0x51,0x97,0x40,0x72,0xf6,0x75,0x9d,0xbf,0x91,0x47,0x6f,0xe2}}; |
||||
|
||||
/*swapping bit 2i with bit 2i+1 of 32-bit x*/ |
||||
#define SWAP1(x) (x) = ((((x) & 0x55555555UL) << 1) | (((x) & 0xaaaaaaaaUL) >> 1)); |
||||
/*swapping bits 4i||4i+1 with bits 4i+2||4i+3 of 32-bit x*/ |
||||
#define SWAP2(x) (x) = ((((x) & 0x33333333UL) << 2) | (((x) & 0xccccccccUL) >> 2)); |
||||
/*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 of 32-bit x*/ |
||||
#define SWAP4(x) (x) = ((((x) & 0x0f0f0f0fUL) << 4) | (((x) & 0xf0f0f0f0UL) >> 4)); |
||||
/*swapping bits 16i||16i+1||......||16i+7 with bits 16i+8||16i+9||......||16i+15 of 32-bit x*/ |
||||
#define SWAP8(x) (x) = ((((x) & 0x00ff00ffUL) << 8) | (((x) & 0xff00ff00UL) >> 8)); |
||||
/*swapping bits 32i||32i+1||......||32i+15 with bits 32i+16||32i+17||......||32i+31 of 32-bit x*/ |
||||
#define SWAP16(x) (x) = ((((x) & 0x0000ffffUL) << 16) | (((x) & 0xffff0000UL) >> 16)); |
||||
|
||||
/*The MDS transform*/ |
||||
#define L(m0,m1,m2,m3,m4,m5,m6,m7) \ |
||||
(m4) ^= (m1); \ |
||||
(m5) ^= (m2); \ |
||||
(m6) ^= (m0) ^ (m3); \ |
||||
(m7) ^= (m0); \ |
||||
(m0) ^= (m5); \ |
||||
(m1) ^= (m6); \ |
||||
(m2) ^= (m4) ^ (m7); \ |
||||
(m3) ^= (m4); |
||||
|
||||
/*The Sbox*/ |
||||
#define Sbox(m0,m1,m2,m3,cc) \ |
||||
m3 = ~(m3); \ |
||||
m0 ^= ((~(m2)) & (cc)); \ |
||||
temp0 = (cc) ^ ((m0) & (m1));\ |
||||
m0 ^= ((m2) & (m3)); \ |
||||
m3 ^= ((~(m1)) & (m2)); \ |
||||
m1 ^= ((m0) & (m2)); \ |
||||
m2 ^= ((m0) & (~(m3))); \ |
||||
m0 ^= ((m1) | (m3)); \ |
||||
m3 ^= ((m1) & (m2)); \ |
||||
m1 ^= (temp0 & (m0)); \ |
||||
m2 ^= temp0; |
||||
|
||||
__device__ __forceinline__ void Sbox_and_MDS_layer(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
uint32_t cc0, cc1; |
||||
//Sbox and MDS layer |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) { |
||||
cc0 = ((uint32_t*)c_E8_bitslice_roundconstant[roundnumber])[i]; |
||||
cc1 = ((uint32_t*)c_E8_bitslice_roundconstant[roundnumber])[i+4]; |
||||
Sbox(state->x[0][i],state->x[2][i], state->x[4][i], state->x[6][i], cc0); |
||||
Sbox(state->x[1][i],state->x[3][i], state->x[5][i], state->x[7][i], cc1); |
||||
L(state->x[0][i],state->x[2][i],state->x[4][i],state->x[6][i],state->x[1][i],state->x[3][i],state->x[5][i],state->x[7][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction0(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP1(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction1(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP2(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction2(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP4(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction3(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP8(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction4(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP16(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction5(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
|
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 2 |
||||
for (int i = 0; i < 4; i = i+2) { |
||||
temp0 = state->x[j][i]; state->x[j][i] = state->x[j][i+1]; state->x[j][i+1] = temp0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction6(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
|
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 2 |
||||
for (int i = 0; i < 2; i++) { |
||||
temp0 = state->x[j][i]; state->x[j][i] = state->x[j][i+2]; state->x[j][i+2] = temp0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/*The bijective function E8, in bitslice form */ |
||||
__device__ __forceinline__ void E8(hashState *state) |
||||
{ |
||||
/*perform 6 rounds*/ |
||||
//#pragma unroll 6 |
||||
for (int i = 0; i < 42; i+=7) |
||||
{ |
||||
RoundFunction0(state, i); |
||||
RoundFunction1(state, i+1); |
||||
RoundFunction2(state, i+2); |
||||
RoundFunction3(state, i+3); |
||||
RoundFunction4(state, i+4); |
||||
RoundFunction5(state, i+5); |
||||
RoundFunction6(state, i+6); |
||||
} |
||||
} |
||||
|
||||
/*The compression function F8 */ |
||||
__device__ __forceinline__ void F8(hashState *state) |
||||
{ |
||||
/*xor the 512-bit message with the fist half of the 1024-bit hash state*/ |
||||
#pragma unroll 16 |
||||
for (int i = 0; i < 16; i++) state->x[i >> 2][i & 3] ^= ((uint32_t*)state->buffer)[i]; |
||||
|
||||
/*the bijective function E8 */ |
||||
E8(state); |
||||
|
||||
/*xor the 512-bit message with the second half of the 1024-bit hash state*/ |
||||
#pragma unroll 16 |
||||
for (int i = 0; i < 16; i++) state->x[(16+i) >> 2][(16+i) & 3] ^= ((uint32_t*)state->buffer)[i]; |
||||
} |
||||
|
||||
|
||||
__device__ __forceinline__ void JHHash(const uint32_t *data, uint32_t *hashval) |
||||
{ |
||||
hashState state; |
||||
|
||||
/*load the intital hash value H0 into state*/ |
||||
/* |
||||
#define INIT(a,b,c,d) ((a) | ((b)<<8) | ((c)<<16) | ((d)<<24)) |
||||
state.x[0][0] = INIT(0x6f,0xd1,0x4b,0x96); |
||||
state.x[0][1] = INIT(0x3e,0x00,0xaa,0x17); |
||||
state.x[0][2] = INIT(0x63,0x6a,0x2e,0x05); |
||||
state.x[0][3] = INIT(0x7a,0x15,0xd5,0x43); |
||||
state.x[1][0] = INIT(0x8a,0x22,0x5e,0x8d); |
||||
state.x[1][1] = INIT(0x0c,0x97,0xef,0x0b); |
||||
state.x[1][2] = INIT(0xe9,0x34,0x12,0x59); |
||||
state.x[1][3] = INIT(0xf2,0xb3,0xc3,0x61); |
||||
state.x[2][0] = INIT(0x89,0x1d,0xa0,0xc1); |
||||
state.x[2][1] = INIT(0x53,0x6f,0x80,0x1e); |
||||
state.x[2][2] = INIT(0x2a,0xa9,0x05,0x6b); |
||||
state.x[2][3] = INIT(0xea,0x2b,0x6d,0x80); |
||||
state.x[3][0] = INIT(0x58,0x8e,0xcc,0xdb); |
||||
state.x[3][1] = INIT(0x20,0x75,0xba,0xa6); |
||||
state.x[3][2] = INIT(0xa9,0x0f,0x3a,0x76); |
||||
state.x[3][3] = INIT(0xba,0xf8,0x3b,0xf7); |
||||
state.x[4][0] = INIT(0x01,0x69,0xe6,0x05); |
||||
state.x[4][1] = INIT(0x41,0xe3,0x4a,0x69); |
||||
state.x[4][2] = INIT(0x46,0xb5,0x8a,0x8e); |
||||
state.x[4][3] = INIT(0x2e,0x6f,0xe6,0x5a); |
||||
state.x[5][0] = INIT(0x10,0x47,0xa7,0xd0); |
||||
state.x[5][1] = INIT(0xc1,0x84,0x3c,0x24); |
||||
state.x[5][2] = INIT(0x3b,0x6e,0x71,0xb1); |
||||
state.x[5][3] = INIT(0x2d,0x5a,0xc1,0x99); |
||||
state.x[6][0] = INIT(0xcf,0x57,0xf6,0xec); |
||||
state.x[6][1] = INIT(0x9d,0xb1,0xf8,0x56); |
||||
state.x[6][2] = INIT(0xa7,0x06,0x88,0x7c); |
||||
state.x[6][3] = INIT(0x57,0x16,0xb1,0x56); |
||||
state.x[7][0] = INIT(0xe3,0xc2,0xfc,0xdf); |
||||
state.x[7][1] = INIT(0xe6,0x85,0x17,0xfb); |
||||
state.x[7][2] = INIT(0x54,0x5a,0x46,0x78); |
||||
state.x[7][3] = INIT(0xcc,0x8c,0xdd,0x4b); |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int j=0;j<8;j++) |
||||
{ |
||||
#pragma unroll 4 |
||||
for(int i=0;i<4;i++) |
||||
state.x[j][i] = c_INIT_bitslice[j][i]; |
||||
} |
||||
|
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) state.buffer[i] = data[i]; |
||||
F8(&state); |
||||
|
||||
/*pad the message when databitlen is multiple of 512 bits, then process the padded block*/ |
||||
state.buffer[0] = 0x80; |
||||
#pragma unroll 14 |
||||
for (int i=1; i < 15; i++) state.buffer[i] = 0; |
||||
state.buffer[15] = 0x00020000; |
||||
F8(&state); |
||||
|
||||
/*truncating the final hash value to generate the message digest*/ |
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) hashval[i] = state.x[4][i]; |
||||
} |
||||
|
||||
// Die Hash-Funktion |
||||
__global__ void quark_jh512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
|
||||
JHHash(Hash, Hash); |
||||
} |
||||
} |
||||
|
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_jh512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
|
||||
cudaMemcpyToSymbol( c_E8_bitslice_roundconstant, |
||||
h_E8_bitslice_roundconstant, |
||||
sizeof(h_E8_bitslice_roundconstant), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( c_INIT_bitslice, |
||||
h_INIT_bitslice, |
||||
sizeof(h_INIT_bitslice), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_jh512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
#include <stdint.h> |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
typedef struct { |
||||
uint32_t x[8][4]; /*the 1024-bit state, ( x[i][0] || x[i][1] || x[i][2] || x[i][3] ) is the ith row of the state in the pseudocode*/ |
||||
uint32_t buffer[16]; /*the 512-bit message block to be hashed;*/ |
||||
} hashState; |
||||
|
||||
/*42 round constants, each round constant is 32-byte (256-bit)*/ |
||||
__constant__ uint32_t c_INIT_bitslice[8][4]; |
||||
__constant__ unsigned char c_E8_bitslice_roundconstant[42][32]; |
||||
|
||||
const uint32_t h_INIT_bitslice[8][4] = { |
||||
{ 0x964bd16f, 0x17aa003e, 0x052e6a63, 0x43d5157a}, |
||||
{ 0x8d5e228a, 0x0bef970c, 0x591234e9, 0x61c3b3f2}, |
||||
{ 0xc1a01d89, 0x1e806f53, 0x6b05a92a, 0x806d2bea}, |
||||
{ 0xdbcc8e58, 0xa6ba7520, 0x763a0fa9, 0xf73bf8ba}, |
||||
{ 0x05e66901, 0x694ae341, 0x8e8ab546, 0x5ae66f2e}, |
||||
{ 0xd0a74710, 0x243c84c1, 0xb1716e3b, 0x99c15a2d}, |
||||
{ 0xecf657cf, 0x56f8b19d, 0x7c8806a7, 0x56b11657}, |
||||
{ 0xdffcc2e3, 0xfb1785e6, 0x78465a54, 0x4bdd8ccc} }; |
||||
|
||||
const unsigned char h_E8_bitslice_roundconstant[42][32]={ |
||||
{0x72,0xd5,0xde,0xa2,0xdf,0x15,0xf8,0x67,0x7b,0x84,0x15,0xa,0xb7,0x23,0x15,0x57,0x81,0xab,0xd6,0x90,0x4d,0x5a,0x87,0xf6,0x4e,0x9f,0x4f,0xc5,0xc3,0xd1,0x2b,0x40}, |
||||
{0xea,0x98,0x3a,0xe0,0x5c,0x45,0xfa,0x9c,0x3,0xc5,0xd2,0x99,0x66,0xb2,0x99,0x9a,0x66,0x2,0x96,0xb4,0xf2,0xbb,0x53,0x8a,0xb5,0x56,0x14,0x1a,0x88,0xdb,0xa2,0x31}, |
||||
{0x3,0xa3,0x5a,0x5c,0x9a,0x19,0xe,0xdb,0x40,0x3f,0xb2,0xa,0x87,0xc1,0x44,0x10,0x1c,0x5,0x19,0x80,0x84,0x9e,0x95,0x1d,0x6f,0x33,0xeb,0xad,0x5e,0xe7,0xcd,0xdc}, |
||||
{0x10,0xba,0x13,0x92,0x2,0xbf,0x6b,0x41,0xdc,0x78,0x65,0x15,0xf7,0xbb,0x27,0xd0,0xa,0x2c,0x81,0x39,0x37,0xaa,0x78,0x50,0x3f,0x1a,0xbf,0xd2,0x41,0x0,0x91,0xd3}, |
||||
{0x42,0x2d,0x5a,0xd,0xf6,0xcc,0x7e,0x90,0xdd,0x62,0x9f,0x9c,0x92,0xc0,0x97,0xce,0x18,0x5c,0xa7,0xb,0xc7,0x2b,0x44,0xac,0xd1,0xdf,0x65,0xd6,0x63,0xc6,0xfc,0x23}, |
||||
{0x97,0x6e,0x6c,0x3,0x9e,0xe0,0xb8,0x1a,0x21,0x5,0x45,0x7e,0x44,0x6c,0xec,0xa8,0xee,0xf1,0x3,0xbb,0x5d,0x8e,0x61,0xfa,0xfd,0x96,0x97,0xb2,0x94,0x83,0x81,0x97}, |
||||
{0x4a,0x8e,0x85,0x37,0xdb,0x3,0x30,0x2f,0x2a,0x67,0x8d,0x2d,0xfb,0x9f,0x6a,0x95,0x8a,0xfe,0x73,0x81,0xf8,0xb8,0x69,0x6c,0x8a,0xc7,0x72,0x46,0xc0,0x7f,0x42,0x14}, |
||||
{0xc5,0xf4,0x15,0x8f,0xbd,0xc7,0x5e,0xc4,0x75,0x44,0x6f,0xa7,0x8f,0x11,0xbb,0x80,0x52,0xde,0x75,0xb7,0xae,0xe4,0x88,0xbc,0x82,0xb8,0x0,0x1e,0x98,0xa6,0xa3,0xf4}, |
||||
{0x8e,0xf4,0x8f,0x33,0xa9,0xa3,0x63,0x15,0xaa,0x5f,0x56,0x24,0xd5,0xb7,0xf9,0x89,0xb6,0xf1,0xed,0x20,0x7c,0x5a,0xe0,0xfd,0x36,0xca,0xe9,0x5a,0x6,0x42,0x2c,0x36}, |
||||
{0xce,0x29,0x35,0x43,0x4e,0xfe,0x98,0x3d,0x53,0x3a,0xf9,0x74,0x73,0x9a,0x4b,0xa7,0xd0,0xf5,0x1f,0x59,0x6f,0x4e,0x81,0x86,0xe,0x9d,0xad,0x81,0xaf,0xd8,0x5a,0x9f}, |
||||
{0xa7,0x5,0x6,0x67,0xee,0x34,0x62,0x6a,0x8b,0xb,0x28,0xbe,0x6e,0xb9,0x17,0x27,0x47,0x74,0x7,0x26,0xc6,0x80,0x10,0x3f,0xe0,0xa0,0x7e,0x6f,0xc6,0x7e,0x48,0x7b}, |
||||
{0xd,0x55,0xa,0xa5,0x4a,0xf8,0xa4,0xc0,0x91,0xe3,0xe7,0x9f,0x97,0x8e,0xf1,0x9e,0x86,0x76,0x72,0x81,0x50,0x60,0x8d,0xd4,0x7e,0x9e,0x5a,0x41,0xf3,0xe5,0xb0,0x62}, |
||||
{0xfc,0x9f,0x1f,0xec,0x40,0x54,0x20,0x7a,0xe3,0xe4,0x1a,0x0,0xce,0xf4,0xc9,0x84,0x4f,0xd7,0x94,0xf5,0x9d,0xfa,0x95,0xd8,0x55,0x2e,0x7e,0x11,0x24,0xc3,0x54,0xa5}, |
||||
{0x5b,0xdf,0x72,0x28,0xbd,0xfe,0x6e,0x28,0x78,0xf5,0x7f,0xe2,0xf,0xa5,0xc4,0xb2,0x5,0x89,0x7c,0xef,0xee,0x49,0xd3,0x2e,0x44,0x7e,0x93,0x85,0xeb,0x28,0x59,0x7f}, |
||||
{0x70,0x5f,0x69,0x37,0xb3,0x24,0x31,0x4a,0x5e,0x86,0x28,0xf1,0x1d,0xd6,0xe4,0x65,0xc7,0x1b,0x77,0x4,0x51,0xb9,0x20,0xe7,0x74,0xfe,0x43,0xe8,0x23,0xd4,0x87,0x8a}, |
||||
{0x7d,0x29,0xe8,0xa3,0x92,0x76,0x94,0xf2,0xdd,0xcb,0x7a,0x9,0x9b,0x30,0xd9,0xc1,0x1d,0x1b,0x30,0xfb,0x5b,0xdc,0x1b,0xe0,0xda,0x24,0x49,0x4f,0xf2,0x9c,0x82,0xbf}, |
||||
{0xa4,0xe7,0xba,0x31,0xb4,0x70,0xbf,0xff,0xd,0x32,0x44,0x5,0xde,0xf8,0xbc,0x48,0x3b,0xae,0xfc,0x32,0x53,0xbb,0xd3,0x39,0x45,0x9f,0xc3,0xc1,0xe0,0x29,0x8b,0xa0}, |
||||
{0xe5,0xc9,0x5,0xfd,0xf7,0xae,0x9,0xf,0x94,0x70,0x34,0x12,0x42,0x90,0xf1,0x34,0xa2,0x71,0xb7,0x1,0xe3,0x44,0xed,0x95,0xe9,0x3b,0x8e,0x36,0x4f,0x2f,0x98,0x4a}, |
||||
{0x88,0x40,0x1d,0x63,0xa0,0x6c,0xf6,0x15,0x47,0xc1,0x44,0x4b,0x87,0x52,0xaf,0xff,0x7e,0xbb,0x4a,0xf1,0xe2,0xa,0xc6,0x30,0x46,0x70,0xb6,0xc5,0xcc,0x6e,0x8c,0xe6}, |
||||
{0xa4,0xd5,0xa4,0x56,0xbd,0x4f,0xca,0x0,0xda,0x9d,0x84,0x4b,0xc8,0x3e,0x18,0xae,0x73,0x57,0xce,0x45,0x30,0x64,0xd1,0xad,0xe8,0xa6,0xce,0x68,0x14,0x5c,0x25,0x67}, |
||||
{0xa3,0xda,0x8c,0xf2,0xcb,0xe,0xe1,0x16,0x33,0xe9,0x6,0x58,0x9a,0x94,0x99,0x9a,0x1f,0x60,0xb2,0x20,0xc2,0x6f,0x84,0x7b,0xd1,0xce,0xac,0x7f,0xa0,0xd1,0x85,0x18}, |
||||
{0x32,0x59,0x5b,0xa1,0x8d,0xdd,0x19,0xd3,0x50,0x9a,0x1c,0xc0,0xaa,0xa5,0xb4,0x46,0x9f,0x3d,0x63,0x67,0xe4,0x4,0x6b,0xba,0xf6,0xca,0x19,0xab,0xb,0x56,0xee,0x7e}, |
||||
{0x1f,0xb1,0x79,0xea,0xa9,0x28,0x21,0x74,0xe9,0xbd,0xf7,0x35,0x3b,0x36,0x51,0xee,0x1d,0x57,0xac,0x5a,0x75,0x50,0xd3,0x76,0x3a,0x46,0xc2,0xfe,0xa3,0x7d,0x70,0x1}, |
||||
{0xf7,0x35,0xc1,0xaf,0x98,0xa4,0xd8,0x42,0x78,0xed,0xec,0x20,0x9e,0x6b,0x67,0x79,0x41,0x83,0x63,0x15,0xea,0x3a,0xdb,0xa8,0xfa,0xc3,0x3b,0x4d,0x32,0x83,0x2c,0x83}, |
||||
{0xa7,0x40,0x3b,0x1f,0x1c,0x27,0x47,0xf3,0x59,0x40,0xf0,0x34,0xb7,0x2d,0x76,0x9a,0xe7,0x3e,0x4e,0x6c,0xd2,0x21,0x4f,0xfd,0xb8,0xfd,0x8d,0x39,0xdc,0x57,0x59,0xef}, |
||||
{0x8d,0x9b,0xc,0x49,0x2b,0x49,0xeb,0xda,0x5b,0xa2,0xd7,0x49,0x68,0xf3,0x70,0xd,0x7d,0x3b,0xae,0xd0,0x7a,0x8d,0x55,0x84,0xf5,0xa5,0xe9,0xf0,0xe4,0xf8,0x8e,0x65}, |
||||
{0xa0,0xb8,0xa2,0xf4,0x36,0x10,0x3b,0x53,0xc,0xa8,0x7,0x9e,0x75,0x3e,0xec,0x5a,0x91,0x68,0x94,0x92,0x56,0xe8,0x88,0x4f,0x5b,0xb0,0x5c,0x55,0xf8,0xba,0xbc,0x4c}, |
||||
{0xe3,0xbb,0x3b,0x99,0xf3,0x87,0x94,0x7b,0x75,0xda,0xf4,0xd6,0x72,0x6b,0x1c,0x5d,0x64,0xae,0xac,0x28,0xdc,0x34,0xb3,0x6d,0x6c,0x34,0xa5,0x50,0xb8,0x28,0xdb,0x71}, |
||||
{0xf8,0x61,0xe2,0xf2,0x10,0x8d,0x51,0x2a,0xe3,0xdb,0x64,0x33,0x59,0xdd,0x75,0xfc,0x1c,0xac,0xbc,0xf1,0x43,0xce,0x3f,0xa2,0x67,0xbb,0xd1,0x3c,0x2,0xe8,0x43,0xb0}, |
||||
{0x33,0xa,0x5b,0xca,0x88,0x29,0xa1,0x75,0x7f,0x34,0x19,0x4d,0xb4,0x16,0x53,0x5c,0x92,0x3b,0x94,0xc3,0xe,0x79,0x4d,0x1e,0x79,0x74,0x75,0xd7,0xb6,0xee,0xaf,0x3f}, |
||||
{0xea,0xa8,0xd4,0xf7,0xbe,0x1a,0x39,0x21,0x5c,0xf4,0x7e,0x9,0x4c,0x23,0x27,0x51,0x26,0xa3,0x24,0x53,0xba,0x32,0x3c,0xd2,0x44,0xa3,0x17,0x4a,0x6d,0xa6,0xd5,0xad}, |
||||
{0xb5,0x1d,0x3e,0xa6,0xaf,0xf2,0xc9,0x8,0x83,0x59,0x3d,0x98,0x91,0x6b,0x3c,0x56,0x4c,0xf8,0x7c,0xa1,0x72,0x86,0x60,0x4d,0x46,0xe2,0x3e,0xcc,0x8,0x6e,0xc7,0xf6}, |
||||
{0x2f,0x98,0x33,0xb3,0xb1,0xbc,0x76,0x5e,0x2b,0xd6,0x66,0xa5,0xef,0xc4,0xe6,0x2a,0x6,0xf4,0xb6,0xe8,0xbe,0xc1,0xd4,0x36,0x74,0xee,0x82,0x15,0xbc,0xef,0x21,0x63}, |
||||
{0xfd,0xc1,0x4e,0xd,0xf4,0x53,0xc9,0x69,0xa7,0x7d,0x5a,0xc4,0x6,0x58,0x58,0x26,0x7e,0xc1,0x14,0x16,0x6,0xe0,0xfa,0x16,0x7e,0x90,0xaf,0x3d,0x28,0x63,0x9d,0x3f}, |
||||
{0xd2,0xc9,0xf2,0xe3,0x0,0x9b,0xd2,0xc,0x5f,0xaa,0xce,0x30,0xb7,0xd4,0xc,0x30,0x74,0x2a,0x51,0x16,0xf2,0xe0,0x32,0x98,0xd,0xeb,0x30,0xd8,0xe3,0xce,0xf8,0x9a}, |
||||
{0x4b,0xc5,0x9e,0x7b,0xb5,0xf1,0x79,0x92,0xff,0x51,0xe6,0x6e,0x4,0x86,0x68,0xd3,0x9b,0x23,0x4d,0x57,0xe6,0x96,0x67,0x31,0xcc,0xe6,0xa6,0xf3,0x17,0xa,0x75,0x5}, |
||||
{0xb1,0x76,0x81,0xd9,0x13,0x32,0x6c,0xce,0x3c,0x17,0x52,0x84,0xf8,0x5,0xa2,0x62,0xf4,0x2b,0xcb,0xb3,0x78,0x47,0x15,0x47,0xff,0x46,0x54,0x82,0x23,0x93,0x6a,0x48}, |
||||
{0x38,0xdf,0x58,0x7,0x4e,0x5e,0x65,0x65,0xf2,0xfc,0x7c,0x89,0xfc,0x86,0x50,0x8e,0x31,0x70,0x2e,0x44,0xd0,0xb,0xca,0x86,0xf0,0x40,0x9,0xa2,0x30,0x78,0x47,0x4e}, |
||||
{0x65,0xa0,0xee,0x39,0xd1,0xf7,0x38,0x83,0xf7,0x5e,0xe9,0x37,0xe4,0x2c,0x3a,0xbd,0x21,0x97,0xb2,0x26,0x1,0x13,0xf8,0x6f,0xa3,0x44,0xed,0xd1,0xef,0x9f,0xde,0xe7}, |
||||
{0x8b,0xa0,0xdf,0x15,0x76,0x25,0x92,0xd9,0x3c,0x85,0xf7,0xf6,0x12,0xdc,0x42,0xbe,0xd8,0xa7,0xec,0x7c,0xab,0x27,0xb0,0x7e,0x53,0x8d,0x7d,0xda,0xaa,0x3e,0xa8,0xde}, |
||||
{0xaa,0x25,0xce,0x93,0xbd,0x2,0x69,0xd8,0x5a,0xf6,0x43,0xfd,0x1a,0x73,0x8,0xf9,0xc0,0x5f,0xef,0xda,0x17,0x4a,0x19,0xa5,0x97,0x4d,0x66,0x33,0x4c,0xfd,0x21,0x6a}, |
||||
{0x35,0xb4,0x98,0x31,0xdb,0x41,0x15,0x70,0xea,0x1e,0xf,0xbb,0xed,0xcd,0x54,0x9b,0x9a,0xd0,0x63,0xa1,0x51,0x97,0x40,0x72,0xf6,0x75,0x9d,0xbf,0x91,0x47,0x6f,0xe2}}; |
||||
|
||||
/*swapping bit 2i with bit 2i+1 of 32-bit x*/ |
||||
#define SWAP1(x) (x) = ((((x) & 0x55555555UL) << 1) | (((x) & 0xaaaaaaaaUL) >> 1)); |
||||
/*swapping bits 4i||4i+1 with bits 4i+2||4i+3 of 32-bit x*/ |
||||
#define SWAP2(x) (x) = ((((x) & 0x33333333UL) << 2) | (((x) & 0xccccccccUL) >> 2)); |
||||
/*swapping bits 8i||8i+1||8i+2||8i+3 with bits 8i+4||8i+5||8i+6||8i+7 of 32-bit x*/ |
||||
#define SWAP4(x) (x) = ((((x) & 0x0f0f0f0fUL) << 4) | (((x) & 0xf0f0f0f0UL) >> 4)); |
||||
/*swapping bits 16i||16i+1||......||16i+7 with bits 16i+8||16i+9||......||16i+15 of 32-bit x*/ |
||||
//#define SWAP8(x) (x) = ((((x) & 0x00ff00ffUL) << 8) | (((x) & 0xff00ff00UL) >> 8)); |
||||
#define SWAP8(x) (x) = __byte_perm(x, x, 0x2301); |
||||
/*swapping bits 32i||32i+1||......||32i+15 with bits 32i+16||32i+17||......||32i+31 of 32-bit x*/ |
||||
//#define SWAP16(x) (x) = ((((x) & 0x0000ffffUL) << 16) | (((x) & 0xffff0000UL) >> 16)); |
||||
#define SWAP16(x) (x) = __byte_perm(x, x, 0x1032); |
||||
|
||||
/*The MDS transform*/ |
||||
#define L(m0,m1,m2,m3,m4,m5,m6,m7) \ |
||||
(m4) ^= (m1); \ |
||||
(m5) ^= (m2); \ |
||||
(m6) ^= (m0) ^ (m3); \ |
||||
(m7) ^= (m0); \ |
||||
(m0) ^= (m5); \ |
||||
(m1) ^= (m6); \ |
||||
(m2) ^= (m4) ^ (m7); \ |
||||
(m3) ^= (m4); |
||||
|
||||
/*The Sbox*/ |
||||
#define Sbox(m0,m1,m2,m3,cc) \ |
||||
m3 = ~(m3); \ |
||||
m0 ^= ((~(m2)) & (cc)); \ |
||||
temp0 = (cc) ^ ((m0) & (m1));\ |
||||
m0 ^= ((m2) & (m3)); \ |
||||
m3 ^= ((~(m1)) & (m2)); \ |
||||
m1 ^= ((m0) & (m2)); \ |
||||
m2 ^= ((m0) & (~(m3))); \ |
||||
m0 ^= ((m1) | (m3)); \ |
||||
m3 ^= ((m1) & (m2)); \ |
||||
m1 ^= (temp0 & (m0)); \ |
||||
m2 ^= temp0; |
||||
|
||||
__device__ __forceinline__ void Sbox_and_MDS_layer(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
uint32_t cc0, cc1; |
||||
//Sbox and MDS layer |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) { |
||||
cc0 = ((uint32_t*)c_E8_bitslice_roundconstant[roundnumber])[i]; |
||||
cc1 = ((uint32_t*)c_E8_bitslice_roundconstant[roundnumber])[i+4]; |
||||
Sbox(state->x[0][i],state->x[2][i], state->x[4][i], state->x[6][i], cc0); |
||||
Sbox(state->x[1][i],state->x[3][i], state->x[5][i], state->x[7][i], cc1); |
||||
L(state->x[0][i],state->x[2][i],state->x[4][i],state->x[6][i],state->x[1][i],state->x[3][i],state->x[5][i],state->x[7][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction0(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP1(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction1(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP2(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction2(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP4(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction3(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP8(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction4(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 4 |
||||
for (int i = 0; i < 4; i++) SWAP16(state->x[j][i]); |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction5(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
|
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 2 |
||||
for (int i = 0; i < 4; i = i+2) { |
||||
temp0 = state->x[j][i]; state->x[j][i] = state->x[j][i+1]; state->x[j][i+1] = temp0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
__device__ __forceinline__ void RoundFunction6(hashState* state, uint32_t roundnumber) |
||||
{ |
||||
uint32_t temp0; |
||||
|
||||
Sbox_and_MDS_layer(state, roundnumber); |
||||
|
||||
#pragma unroll 4 |
||||
for (int j = 1; j < 8; j = j+2) |
||||
{ |
||||
#pragma unroll 2 |
||||
for (int i = 0; i < 2; i++) { |
||||
temp0 = state->x[j][i]; state->x[j][i] = state->x[j][i+2]; state->x[j][i+2] = temp0; |
||||
} |
||||
} |
||||
} |
||||
|
||||
/*The bijective function E8, in bitslice form */ |
||||
__device__ __forceinline__ void E8(hashState *state) |
||||
{ |
||||
/*perform 6 rounds*/ |
||||
//#pragma unroll 6 |
||||
for (int i = 0; i < 42; i+=7) |
||||
{ |
||||
RoundFunction0(state, i); |
||||
RoundFunction1(state, i+1); |
||||
RoundFunction2(state, i+2); |
||||
RoundFunction3(state, i+3); |
||||
RoundFunction4(state, i+4); |
||||
RoundFunction5(state, i+5); |
||||
RoundFunction6(state, i+6); |
||||
} |
||||
} |
||||
|
||||
/*The compression function F8 */ |
||||
__device__ __forceinline__ void F8(hashState *state) |
||||
{ |
||||
/*xor the 512-bit message with the fist half of the 1024-bit hash state*/ |
||||
#pragma unroll 16 |
||||
for (int i = 0; i < 16; i++) state->x[i >> 2][i & 3] ^= ((uint32_t*)state->buffer)[i]; |
||||
|
||||
/*the bijective function E8 */ |
||||
E8(state); |
||||
|
||||
/*xor the 512-bit message with the second half of the 1024-bit hash state*/ |
||||
#pragma unroll 16 |
||||
for (int i = 0; i < 16; i++) state->x[(16+i) >> 2][(16+i) & 3] ^= ((uint32_t*)state->buffer)[i]; |
||||
} |
||||
|
||||
|
||||
__device__ __forceinline__ void JHHash(const uint32_t *data, uint32_t *hashval) |
||||
{ |
||||
hashState state; |
||||
|
||||
/*load the intital hash value H0 into state*/ |
||||
/* |
||||
#define INIT(a,b,c,d) ((a) | ((b)<<8) | ((c)<<16) | ((d)<<24)) |
||||
state.x[0][0] = INIT(0x6f,0xd1,0x4b,0x96); |
||||
state.x[0][1] = INIT(0x3e,0x00,0xaa,0x17); |
||||
state.x[0][2] = INIT(0x63,0x6a,0x2e,0x05); |
||||
state.x[0][3] = INIT(0x7a,0x15,0xd5,0x43); |
||||
state.x[1][0] = INIT(0x8a,0x22,0x5e,0x8d); |
||||
state.x[1][1] = INIT(0x0c,0x97,0xef,0x0b); |
||||
state.x[1][2] = INIT(0xe9,0x34,0x12,0x59); |
||||
state.x[1][3] = INIT(0xf2,0xb3,0xc3,0x61); |
||||
state.x[2][0] = INIT(0x89,0x1d,0xa0,0xc1); |
||||
state.x[2][1] = INIT(0x53,0x6f,0x80,0x1e); |
||||
state.x[2][2] = INIT(0x2a,0xa9,0x05,0x6b); |
||||
state.x[2][3] = INIT(0xea,0x2b,0x6d,0x80); |
||||
state.x[3][0] = INIT(0x58,0x8e,0xcc,0xdb); |
||||
state.x[3][1] = INIT(0x20,0x75,0xba,0xa6); |
||||
state.x[3][2] = INIT(0xa9,0x0f,0x3a,0x76); |
||||
state.x[3][3] = INIT(0xba,0xf8,0x3b,0xf7); |
||||
state.x[4][0] = INIT(0x01,0x69,0xe6,0x05); |
||||
state.x[4][1] = INIT(0x41,0xe3,0x4a,0x69); |
||||
state.x[4][2] = INIT(0x46,0xb5,0x8a,0x8e); |
||||
state.x[4][3] = INIT(0x2e,0x6f,0xe6,0x5a); |
||||
state.x[5][0] = INIT(0x10,0x47,0xa7,0xd0); |
||||
state.x[5][1] = INIT(0xc1,0x84,0x3c,0x24); |
||||
state.x[5][2] = INIT(0x3b,0x6e,0x71,0xb1); |
||||
state.x[5][3] = INIT(0x2d,0x5a,0xc1,0x99); |
||||
state.x[6][0] = INIT(0xcf,0x57,0xf6,0xec); |
||||
state.x[6][1] = INIT(0x9d,0xb1,0xf8,0x56); |
||||
state.x[6][2] = INIT(0xa7,0x06,0x88,0x7c); |
||||
state.x[6][3] = INIT(0x57,0x16,0xb1,0x56); |
||||
state.x[7][0] = INIT(0xe3,0xc2,0xfc,0xdf); |
||||
state.x[7][1] = INIT(0xe6,0x85,0x17,0xfb); |
||||
state.x[7][2] = INIT(0x54,0x5a,0x46,0x78); |
||||
state.x[7][3] = INIT(0xcc,0x8c,0xdd,0x4b); |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int j=0;j<8;j++) |
||||
{ |
||||
#pragma unroll 4 |
||||
for(int i=0;i<4;i++) |
||||
state.x[j][i] = c_INIT_bitslice[j][i]; |
||||
} |
||||
|
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) state.buffer[i] = data[i]; |
||||
F8(&state); |
||||
|
||||
/*pad the message when databitlen is multiple of 512 bits, then process the padded block*/ |
||||
state.buffer[0] = 0x80; |
||||
#pragma unroll 14 |
||||
for (int i=1; i < 15; i++) state.buffer[i] = 0; |
||||
state.buffer[15] = 0x00020000; |
||||
F8(&state); |
||||
|
||||
/*truncating the final hash value to generate the message digest*/ |
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) hashval[i] = state.x[4][i]; |
||||
} |
||||
|
||||
// Die Hash-Funktion |
||||
__global__ void quark_jh512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
|
||||
JHHash(Hash, Hash); |
||||
} |
||||
} |
||||
|
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_jh512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
|
||||
cudaMemcpyToSymbol( c_E8_bitslice_roundconstant, |
||||
h_E8_bitslice_roundconstant, |
||||
sizeof(h_E8_bitslice_roundconstant), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( c_INIT_bitslice, |
||||
h_INIT_bitslice, |
||||
sizeof(h_INIT_bitslice), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_jh512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
|
@ -1,482 +1,434 @@
@@ -1,482 +1,434 @@
|
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
#define USE_SHUFFLE 0 |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
typedef unsigned long long uint64_t; |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// die Message it Padding zur Berechnung auf der GPU |
||||
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) |
||||
|
||||
// ---------------------------- BEGIN CUDA quark_blake512 functions ------------------------------------ |
||||
|
||||
__constant__ uint8_t c_sigma[16][16]; |
||||
|
||||
const uint8_t host_sigma[16][16] = |
||||
{ |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
||||
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
||||
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
||||
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
||||
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
||||
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
||||
}; |
||||
|
||||
// das Hi Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t HIWORD(const uint64_t &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2hiint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x >> 32); |
||||
#endif |
||||
} |
||||
|
||||
// das Hi Word in einem 64 Bit Typen ersetzen |
||||
static __device__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL); |
||||
} |
||||
|
||||
// das Lo Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t LOWORD(const uint64_t &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2loint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x & 0xFFFFFFFFULL); |
||||
#endif |
||||
} |
||||
|
||||
// das Lo Word in einem 64 Bit Typen ersetzen |
||||
static __device__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y); |
||||
} |
||||
|
||||
/* |
||||
#define SWAP32(x) \ |
||||
((((x) << 24) & 0xff000000u) | (((x) << 8) & 0x00ff0000u) | \ |
||||
(((x) >> 8) & 0x0000ff00u) | (((x) >> 24) & 0x000000ffu)) |
||||
|
||||
#define SWAP64(x) \ |
||||
((uint64_t)((((uint64_t)(x) & 0xff00000000000000ULL) >> 56) | \ |
||||
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40) | \ |
||||
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24) | \ |
||||
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8) | \ |
||||
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8) | \ |
||||
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24) | \ |
||||
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40) | \ |
||||
(((uint64_t)(x) & 0x00000000000000ffULL) << 56))) |
||||
*/ |
||||
|
||||
/* |
||||
__device__ __forceinline__ void SWAP32(uint32_t *x) |
||||
{ |
||||
// Input: 33221100 |
||||
// Output: 00112233 |
||||
x[0] = __byte_perm(x[0], 0, 0x0123); |
||||
} |
||||
*/ |
||||
__device__ __forceinline__ uint64_t SWAP64(uint64_t x) |
||||
{ |
||||
// Input: 77665544 33221100 |
||||
// Output: 00112233 44556677 |
||||
uint64_t temp[2]; |
||||
temp[0] = __byte_perm(HIWORD(x), 0, 0x0123); |
||||
temp[1] = __byte_perm(LOWORD(x), 0, 0x0123); |
||||
|
||||
return temp[0] | (temp[1]<<32); |
||||
} |
||||
|
||||
__constant__ uint64_t c_u512[16]; |
||||
|
||||
const uint64_t host_u512[16] = |
||||
{ |
||||
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, |
||||
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, |
||||
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, |
||||
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, |
||||
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, |
||||
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, |
||||
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, |
||||
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL |
||||
}; |
||||
|
||||
|
||||
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt |
||||
#if __CUDA_ARCH__ >= 350 |
||||
__forceinline__ __device__ uint64_t ROTR(const uint64_t value, const int offset) { |
||||
uint2 result; |
||||
if(offset < 32) { |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
} else { |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
} |
||||
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
||||
} |
||||
#else |
||||
#define ROTR(x, n) (((x) >> (n)) | ((x) << (64 - (n)))) |
||||
#endif |
||||
|
||||
#define G(a,b,c,d,e) \ |
||||
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\ |
||||
v[d] = ROTR( v[d] ^ v[a],32); \ |
||||
v[c] += v[d]; \ |
||||
v[b] = ROTR( v[b] ^ v[c],25); \ |
||||
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \ |
||||
v[d] = ROTR( v[d] ^ v[a],16); \ |
||||
v[c] += v[d]; \ |
||||
v[b] = ROTR( v[b] ^ v[c],11); |
||||
|
||||
|
||||
__device__ void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int bits ) |
||||
{ |
||||
uint64_t v[16], m[16], i; |
||||
|
||||
#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) |
||||
{ |
||||
m[i] = SWAP64(block[i]); |
||||
} |
||||
|
||||
#pragma unroll 8 |
||||
for( i = 0; i < 8; ++i ) v[i] = h[i]; |
||||
|
||||
v[ 8] = u512[0]; |
||||
v[ 9] = u512[1]; |
||||
v[10] = u512[2]; |
||||
v[11] = u512[3]; |
||||
v[12] = u512[4]; |
||||
v[13] = u512[5]; |
||||
v[14] = u512[6]; |
||||
v[15] = u512[7]; |
||||
|
||||
v[12] ^= bits; |
||||
v[13] ^= bits; |
||||
|
||||
//#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) |
||||
{ |
||||
/* column step */ |
||||
G( 0, 4, 8, 12, 0 ); |
||||
G( 1, 5, 9, 13, 2 ); |
||||
G( 2, 6, 10, 14, 4 ); |
||||
G( 3, 7, 11, 15, 6 ); |
||||
/* diagonal step */ |
||||
G( 0, 5, 10, 15, 8 ); |
||||
G( 1, 6, 11, 12, 10 ); |
||||
G( 2, 7, 8, 13, 12 ); |
||||
G( 3, 4, 9, 14, 14 ); |
||||
} |
||||
|
||||
#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i]; |
||||
} |
||||
|
||||
// Endian Drehung für 32 Bit Typen |
||||
|
||||
static __device__ uint32_t cuda_swab32(uint32_t x) |
||||
{ |
||||
return __byte_perm(x, 0, 0x0123); |
||||
/* |
||||
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u) |
||||
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu)); |
||||
*/ |
||||
} |
||||
/* |
||||
// Endian Drehung für 64 Bit Typen |
||||
static __device__ uint64_t cuda_swab64(uint64_t x) { |
||||
uint32_t h = (x >> 32); |
||||
uint32_t l = (x & 0xFFFFFFFFULL); |
||||
return (((uint64_t)cuda_swab32(l)) << 32) | ((uint64_t)cuda_swab32(h)); |
||||
} |
||||
*/ |
||||
|
||||
static __constant__ uint64_t d_constMem[8]; |
||||
static const uint64_t h_constMem[8] = { |
||||
0x6a09e667f3bcc908ULL, |
||||
0xbb67ae8584caa73bULL, |
||||
0x3c6ef372fe94f82bULL, |
||||
0xa54ff53a5f1d36f1ULL, |
||||
0x510e527fade682d1ULL, |
||||
0x9b05688c2b3e6c1fULL, |
||||
0x1f83d9abfb41bd6bULL, |
||||
0x5be0cd19137e2179ULL }; |
||||
|
||||
// Hash-Padding |
||||
static __constant__ uint64_t d_constHashPadding[8]; |
||||
static const uint64_t h_constHashPadding[8] = { |
||||
0x0000000000000080ull, |
||||
0, |
||||
0, |
||||
0, |
||||
0, |
||||
0x0100000000000000ull, |
||||
0, |
||||
0x0002000000000000ull }; |
||||
|
||||
__global__ void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
#if USE_SHUFFLE |
||||
const int warpID = threadIdx.x & 0x0F; // 16 warps |
||||
const int warpBlockID = (thread + 15)>>4; // aufrunden auf volle Warp-Blöcke |
||||
const int maxHashPosition = thread<<3; |
||||
#endif |
||||
|
||||
#if USE_SHUFFLE |
||||
if (warpBlockID < ( (threads+15)>>4 )) |
||||
#else |
||||
if (thread < threads) |
||||
#endif |
||||
{ |
||||
// bestimme den aktuellen Zähler |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
//uint64_t *inpHash = &g_hash[8 * hashPosition]; |
||||
uint64_t *inpHash = &g_hash[hashPosition<<3]; |
||||
|
||||
// State vorbereiten |
||||
uint64_t h[8]; |
||||
/* |
||||
h[0] = 0x6a09e667f3bcc908ULL; |
||||
h[1] = 0xbb67ae8584caa73bULL; |
||||
h[2] = 0x3c6ef372fe94f82bULL; |
||||
h[3] = 0xa54ff53a5f1d36f1ULL; |
||||
h[4] = 0x510e527fade682d1ULL; |
||||
h[5] = 0x9b05688c2b3e6c1fULL; |
||||
h[6] = 0x1f83d9abfb41bd6bULL; |
||||
h[7] = 0x5be0cd19137e2179ULL; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
h[i] = d_constMem[i]; |
||||
|
||||
// 128 Byte für die Message |
||||
uint64_t buf[16]; |
||||
|
||||
// Message für die erste Runde in Register holen |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) buf[i] = inpHash[i]; |
||||
|
||||
/* |
||||
buf[ 8] = 0x0000000000000080ull; |
||||
buf[ 9] = 0; |
||||
buf[10] = 0; |
||||
buf[11] = 0; |
||||
buf[12] = 0; |
||||
buf[13] = 0x0100000000000000ull; |
||||
buf[14] = 0; |
||||
buf[15] = 0x0002000000000000ull; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
buf[i+8] = d_constHashPadding[i]; |
||||
|
||||
// die einzige Hashing-Runde |
||||
quark_blake512_compress( h, buf, c_sigma, c_u512, 512 ); |
||||
|
||||
// Hash rauslassen |
||||
#if __CUDA_ARCH__ >= 130 |
||||
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
||||
uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) { |
||||
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) ); |
||||
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) ); |
||||
} |
||||
#else |
||||
// in dieser Version passieren auch ein paar 64 Bit Shifts |
||||
uint64_t *outHash = &g_hash[8 * hashPosition]; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) |
||||
{ |
||||
//outHash[i] = cuda_swab64( h[i] ); |
||||
outHash[i] = SWAP64(h[i]); |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
__global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
// bestimme den aktuellen Zähler |
||||
uint32_t nounce = startNounce + thread; |
||||
|
||||
// State vorbereiten |
||||
uint64_t h[8]; |
||||
/* |
||||
h[0] = 0x6a09e667f3bcc908ULL; |
||||
h[1] = 0xbb67ae8584caa73bULL; |
||||
h[2] = 0x3c6ef372fe94f82bULL; |
||||
h[3] = 0xa54ff53a5f1d36f1ULL; |
||||
h[4] = 0x510e527fade682d1ULL; |
||||
h[5] = 0x9b05688c2b3e6c1fULL; |
||||
h[6] = 0x1f83d9abfb41bd6bULL; |
||||
h[7] = 0x5be0cd19137e2179ULL; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
h[i] = d_constMem[i]; |
||||
// 128 Byte für die Message |
||||
uint64_t buf[16]; |
||||
|
||||
// Message für die erste Runde in Register holen |
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) buf[i] = c_PaddedMessage80[i]; |
||||
|
||||
// die Nounce durch die thread-spezifische ersetzen |
||||
buf[9] = REPLACE_HIWORD(buf[9], cuda_swab32(nounce)); |
||||
|
||||
// die einzige Hashing-Runde |
||||
quark_blake512_compress( h, buf, c_sigma, c_u512, 640 ); |
||||
|
||||
// Hash rauslassen |
||||
#if __CUDA_ARCH__ >= 130 |
||||
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
||||
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) { |
||||
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) ); |
||||
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) ); |
||||
} |
||||
#else |
||||
// in dieser Version passieren auch ein paar 64 Bit Shifts |
||||
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) |
||||
{ |
||||
//outHash[i] = cuda_swab64( h[i] ); |
||||
outHash[i] = SWAP64(h[i]); |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
// ---------------------------- END CUDA quark_blake512 functions ------------------------------------ |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_blake512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// Kopiere die Hash-Tabellen in den GPU-Speicher |
||||
cudaMemcpyToSymbol( c_sigma, |
||||
host_sigma, |
||||
sizeof(host_sigma), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( c_u512, |
||||
host_u512, |
||||
sizeof(host_u512), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( d_constMem, |
||||
h_constMem, |
||||
sizeof(h_constMem), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( d_constHashPadding, |
||||
h_constHashPadding, |
||||
sizeof(h_constHashPadding), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
// Blake512 für 80 Byte grosse Eingangsdaten |
||||
__host__ void quark_blake512_cpu_setBlock_80(void *pdata) |
||||
{ |
||||
// Message mit Padding bereitstellen |
||||
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. |
||||
unsigned char PaddedMessage[128]; |
||||
memcpy(PaddedMessage, pdata, 80); |
||||
memset(PaddedMessage+80, 0, 48); |
||||
PaddedMessage[80] = 0x80; |
||||
PaddedMessage[111] = 1; |
||||
PaddedMessage[126] = 0x02; |
||||
PaddedMessage[127] = 0x80; |
||||
|
||||
// die Message zur Berechnung auf der GPU |
||||
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
#if 0 |
||||
// Blake512 für 64 Byte grosse Eingangsdaten |
||||
// evtl. macht es gar keinen Sinn, das alles ins Constant Memory to schicken. Es sind hier sowieso |
||||
// nur die letzten 64 Bytes des Blocks konstant, und die meisten Bytes davon sind 0. Das kann mnan |
||||
// auch im Kernel initialisieren. |
||||
__host__ void quark_blake512_cpu_setBlock_64(void *pdata) |
||||
{ |
||||
// Message mit Padding bereitstellen |
||||
unsigned char PaddedMessage[128]; |
||||
memcpy(PaddedMessage, pdata, 64); // Hinweis: diese 64 Bytes sind nonce-spezifisch und ändern sich KOMPLETT für jede Nonce! |
||||
memset(PaddedMessage+64, 0, 64); |
||||
PaddedMessage[64] = 0x80; |
||||
PaddedMessage[111] = 1; |
||||
PaddedMessage[126] = 0x02; |
||||
PaddedMessage[127] = 0x00; |
||||
|
||||
// die Message zur Berechnung auf der GPU |
||||
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
#endif |
||||
|
||||
__host__ void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_blake512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_nonceVector, (uint64_t*)d_outputHash); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
__host__ void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_blake512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
#define USE_SHUFFLE 0 |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
typedef unsigned long long uint64_t; |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// die Message it Padding zur Berechnung auf der GPU |
||||
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding) |
||||
|
||||
// ---------------------------- BEGIN CUDA quark_blake512 functions ------------------------------------ |
||||
|
||||
__constant__ uint8_t c_sigma[16][16]; |
||||
|
||||
const uint8_t host_sigma[16][16] = |
||||
{ |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
||||
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }, |
||||
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 }, |
||||
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }, |
||||
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 }, |
||||
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 }, |
||||
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }, |
||||
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 }, |
||||
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 }, |
||||
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 }, |
||||
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 }, |
||||
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } |
||||
}; |
||||
|
||||
// das Hi Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t HIWORD(const uint64_t &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2hiint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x >> 32); |
||||
#endif |
||||
} |
||||
|
||||
// das Hi Word in einem 64 Bit Typen ersetzen |
||||
static __device__ uint64_t REPLACE_HIWORD(const uint64_t &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFFULL) | (((uint64_t)y) << 32ULL); |
||||
} |
||||
|
||||
// das Lo Word aus einem 64 Bit Typen extrahieren |
||||
static __device__ uint32_t LOWORD(const uint64_t &x) { |
||||
#if __CUDA_ARCH__ >= 130 |
||||
return (uint32_t)__double2loint(__longlong_as_double(x)); |
||||
#else |
||||
return (uint32_t)(x & 0xFFFFFFFFULL); |
||||
#endif |
||||
} |
||||
|
||||
// das Lo Word in einem 64 Bit Typen ersetzen |
||||
static __device__ uint64_t REPLACE_LOWORD(const uint64_t &x, const uint32_t &y) { |
||||
return (x & 0xFFFFFFFF00000000ULL) | ((uint64_t)y); |
||||
} |
||||
|
||||
__device__ __forceinline__ uint64_t SWAP64(uint64_t x) |
||||
{ |
||||
// Input: 77665544 33221100 |
||||
// Output: 00112233 44556677 |
||||
uint64_t temp[2]; |
||||
temp[0] = __byte_perm(HIWORD(x), 0, 0x0123); |
||||
temp[1] = __byte_perm(LOWORD(x), 0, 0x0123); |
||||
|
||||
return temp[0] | (temp[1]<<32); |
||||
} |
||||
|
||||
__constant__ uint64_t c_u512[16]; |
||||
|
||||
const uint64_t host_u512[16] = |
||||
{ |
||||
0x243f6a8885a308d3ULL, 0x13198a2e03707344ULL, |
||||
0xa4093822299f31d0ULL, 0x082efa98ec4e6c89ULL, |
||||
0x452821e638d01377ULL, 0xbe5466cf34e90c6cULL, |
||||
0xc0ac29b7c97c50ddULL, 0x3f84d5b5b5470917ULL, |
||||
0x9216d5d98979fb1bULL, 0xd1310ba698dfb5acULL, |
||||
0x2ffd72dbd01adfb7ULL, 0xb8e1afed6a267e96ULL, |
||||
0xba7c9045f12c7f99ULL, 0x24a19947b3916cf7ULL, |
||||
0x0801f2e2858efc16ULL, 0x636920d871574e69ULL |
||||
}; |
||||
|
||||
|
||||
// diese 64 Bit Rotates werden unter Compute 3.5 (und besser) mit dem Funnel Shifter beschleunigt |
||||
#if __CUDA_ARCH__ >= 350 |
||||
__forceinline__ __device__ uint64_t ROTR(const uint64_t value, const int offset) { |
||||
uint2 result; |
||||
if(offset < 32) { |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
} else { |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.r.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
} |
||||
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
||||
} |
||||
#else |
||||
#define ROTR(x, n) (((x) >> (n)) | ((x) << (64 - (n)))) |
||||
#endif |
||||
|
||||
#define G(a,b,c,d,e) \ |
||||
v[a] += (m[sigma[i][e]] ^ u512[sigma[i][e+1]]) + v[b];\ |
||||
v[d] = ROTR( v[d] ^ v[a],32); \ |
||||
v[c] += v[d]; \ |
||||
v[b] = ROTR( v[b] ^ v[c],25); \ |
||||
v[a] += (m[sigma[i][e+1]] ^ u512[sigma[i][e]])+v[b]; \ |
||||
v[d] = ROTR( v[d] ^ v[a],16); \ |
||||
v[c] += v[d]; \ |
||||
v[b] = ROTR( v[b] ^ v[c],11); |
||||
|
||||
|
||||
__device__ void quark_blake512_compress( uint64_t *h, const uint64_t *block, const uint8_t ((*sigma)[16]), const uint64_t *u512, const int bits ) |
||||
{ |
||||
uint64_t v[16], m[16], i; |
||||
|
||||
#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) |
||||
{ |
||||
m[i] = SWAP64(block[i]); |
||||
} |
||||
|
||||
#pragma unroll 8 |
||||
for( i = 0; i < 8; ++i ) v[i] = h[i]; |
||||
|
||||
v[ 8] = u512[0]; |
||||
v[ 9] = u512[1]; |
||||
v[10] = u512[2]; |
||||
v[11] = u512[3]; |
||||
v[12] = u512[4]; |
||||
v[13] = u512[5]; |
||||
v[14] = u512[6]; |
||||
v[15] = u512[7]; |
||||
|
||||
v[12] ^= bits; |
||||
v[13] ^= bits; |
||||
|
||||
//#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) |
||||
{ |
||||
/* column step */ |
||||
G( 0, 4, 8, 12, 0 ); |
||||
G( 1, 5, 9, 13, 2 ); |
||||
G( 2, 6, 10, 14, 4 ); |
||||
G( 3, 7, 11, 15, 6 ); |
||||
/* diagonal step */ |
||||
G( 0, 5, 10, 15, 8 ); |
||||
G( 1, 6, 11, 12, 10 ); |
||||
G( 2, 7, 8, 13, 12 ); |
||||
G( 3, 4, 9, 14, 14 ); |
||||
} |
||||
|
||||
#pragma unroll 16 |
||||
for( i = 0; i < 16; ++i ) h[i % 8] ^= v[i]; |
||||
} |
||||
|
||||
// Endian Drehung für 32 Bit Typen |
||||
|
||||
static __device__ uint32_t cuda_swab32(uint32_t x) |
||||
{ |
||||
return __byte_perm(x, 0, 0x0123); |
||||
} |
||||
|
||||
/* |
||||
// Endian Drehung für 64 Bit Typen |
||||
static __device__ uint64_t cuda_swab64(uint64_t x) { |
||||
uint32_t h = (x >> 32); |
||||
uint32_t l = (x & 0xFFFFFFFFULL); |
||||
return (((uint64_t)cuda_swab32(l)) << 32) | ((uint64_t)cuda_swab32(h)); |
||||
} |
||||
*/ |
||||
|
||||
static __constant__ uint64_t d_constMem[8]; |
||||
static const uint64_t h_constMem[8] = { |
||||
0x6a09e667f3bcc908ULL, |
||||
0xbb67ae8584caa73bULL, |
||||
0x3c6ef372fe94f82bULL, |
||||
0xa54ff53a5f1d36f1ULL, |
||||
0x510e527fade682d1ULL, |
||||
0x9b05688c2b3e6c1fULL, |
||||
0x1f83d9abfb41bd6bULL, |
||||
0x5be0cd19137e2179ULL }; |
||||
|
||||
// Hash-Padding |
||||
static __constant__ uint64_t d_constHashPadding[8]; |
||||
static const uint64_t h_constHashPadding[8] = { |
||||
0x0000000000000080ull, |
||||
0, |
||||
0, |
||||
0, |
||||
0, |
||||
0x0100000000000000ull, |
||||
0, |
||||
0x0002000000000000ull }; |
||||
|
||||
__global__ __launch_bounds__(256, 2) void quark_blake512_gpu_hash_64(int threads, uint32_t startNounce, uint32_t *g_nonceVector, uint64_t *g_hash) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
|
||||
#if USE_SHUFFLE |
||||
const int warpID = threadIdx.x & 0x0F; // 16 warps |
||||
const int warpBlockID = (thread + 15)>>4; // aufrunden auf volle Warp-Blöcke |
||||
const int maxHashPosition = thread<<3; |
||||
#endif |
||||
|
||||
#if USE_SHUFFLE |
||||
if (warpBlockID < ( (threads+15)>>4 )) |
||||
#else |
||||
if (thread < threads) |
||||
#endif |
||||
{ |
||||
// bestimme den aktuellen Zähler |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
//uint64_t *inpHash = &g_hash[8 * hashPosition]; |
||||
uint64_t *inpHash = &g_hash[hashPosition<<3]; |
||||
|
||||
// State vorbereiten |
||||
uint64_t h[8]; |
||||
/* |
||||
h[0] = 0x6a09e667f3bcc908ULL; |
||||
h[1] = 0xbb67ae8584caa73bULL; |
||||
h[2] = 0x3c6ef372fe94f82bULL; |
||||
h[3] = 0xa54ff53a5f1d36f1ULL; |
||||
h[4] = 0x510e527fade682d1ULL; |
||||
h[5] = 0x9b05688c2b3e6c1fULL; |
||||
h[6] = 0x1f83d9abfb41bd6bULL; |
||||
h[7] = 0x5be0cd19137e2179ULL; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
h[i] = d_constMem[i]; |
||||
|
||||
// 128 Byte für die Message |
||||
uint64_t buf[16]; |
||||
|
||||
// Message für die erste Runde in Register holen |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) buf[i] = inpHash[i]; |
||||
|
||||
/* |
||||
buf[ 8] = 0x0000000000000080ull; |
||||
buf[ 9] = 0; |
||||
buf[10] = 0; |
||||
buf[11] = 0; |
||||
buf[12] = 0; |
||||
buf[13] = 0x0100000000000000ull; |
||||
buf[14] = 0; |
||||
buf[15] = 0x0002000000000000ull; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
buf[i+8] = d_constHashPadding[i]; |
||||
|
||||
// die einzige Hashing-Runde |
||||
quark_blake512_compress( h, buf, c_sigma, c_u512, 512 ); |
||||
|
||||
// Hash rauslassen |
||||
#if __CUDA_ARCH__ >= 130 |
||||
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
||||
uint32_t *outHash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) { |
||||
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) ); |
||||
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) ); |
||||
} |
||||
#else |
||||
// in dieser Version passieren auch ein paar 64 Bit Shifts |
||||
uint64_t *outHash = &g_hash[8 * hashPosition]; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) |
||||
{ |
||||
//outHash[i] = cuda_swab64( h[i] ); |
||||
outHash[i] = SWAP64(h[i]); |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
__global__ void quark_blake512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
// bestimme den aktuellen Zähler |
||||
uint32_t nounce = startNounce + thread; |
||||
|
||||
// State vorbereiten |
||||
uint64_t h[8]; |
||||
/* |
||||
h[0] = 0x6a09e667f3bcc908ULL; |
||||
h[1] = 0xbb67ae8584caa73bULL; |
||||
h[2] = 0x3c6ef372fe94f82bULL; |
||||
h[3] = 0xa54ff53a5f1d36f1ULL; |
||||
h[4] = 0x510e527fade682d1ULL; |
||||
h[5] = 0x9b05688c2b3e6c1fULL; |
||||
h[6] = 0x1f83d9abfb41bd6bULL; |
||||
h[7] = 0x5be0cd19137e2179ULL; |
||||
*/ |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
h[i] = d_constMem[i]; |
||||
// 128 Byte für die Message |
||||
uint64_t buf[16]; |
||||
|
||||
// Message für die erste Runde in Register holen |
||||
#pragma unroll 16 |
||||
for (int i=0; i < 16; ++i) buf[i] = c_PaddedMessage80[i]; |
||||
|
||||
// die Nounce durch die thread-spezifische ersetzen |
||||
buf[9] = REPLACE_HIWORD(buf[9], cuda_swab32(nounce)); |
||||
|
||||
// die einzige Hashing-Runde |
||||
quark_blake512_compress( h, buf, c_sigma, c_u512, 640 ); |
||||
|
||||
// Hash rauslassen |
||||
#if __CUDA_ARCH__ >= 130 |
||||
// ausschliesslich 32 bit Operationen sofern die SM1.3 double intrinsics verfügbar sind |
||||
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) { |
||||
outHash[2*i+0] = cuda_swab32( HIWORD(h[i]) ); |
||||
outHash[2*i+1] = cuda_swab32( LOWORD(h[i]) ); |
||||
} |
||||
#else |
||||
// in dieser Version passieren auch ein paar 64 Bit Shifts |
||||
uint64_t *outHash = (uint64_t *)outputHash + 8 * thread; |
||||
#pragma unroll 8 |
||||
for (int i=0; i < 8; ++i) |
||||
{ |
||||
//outHash[i] = cuda_swab64( h[i] ); |
||||
outHash[i] = SWAP64(h[i]); |
||||
} |
||||
#endif |
||||
} |
||||
} |
||||
|
||||
|
||||
// ---------------------------- END CUDA quark_blake512 functions ------------------------------------ |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_blake512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// Kopiere die Hash-Tabellen in den GPU-Speicher |
||||
cudaMemcpyToSymbol( c_sigma, |
||||
host_sigma, |
||||
sizeof(host_sigma), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( c_u512, |
||||
host_u512, |
||||
sizeof(host_u512), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( d_constMem, |
||||
h_constMem, |
||||
sizeof(h_constMem), |
||||
0, cudaMemcpyHostToDevice); |
||||
|
||||
cudaMemcpyToSymbol( d_constHashPadding, |
||||
h_constHashPadding, |
||||
sizeof(h_constHashPadding), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
// Blake512 für 80 Byte grosse Eingangsdaten |
||||
__host__ void quark_blake512_cpu_setBlock_80(void *pdata) |
||||
{ |
||||
// Message mit Padding bereitstellen |
||||
// lediglich die korrekte Nonce ist noch ab Byte 76 einzusetzen. |
||||
unsigned char PaddedMessage[128]; |
||||
memcpy(PaddedMessage, pdata, 80); |
||||
memset(PaddedMessage+80, 0, 48); |
||||
PaddedMessage[80] = 0x80; |
||||
PaddedMessage[111] = 1; |
||||
PaddedMessage[126] = 0x02; |
||||
PaddedMessage[127] = 0x80; |
||||
|
||||
// die Message zur Berechnung auf der GPU |
||||
cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_outputHash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_blake512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, d_nonceVector, (uint64_t*)d_outputHash); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
||||
__host__ void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_blake512_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
@ -0,0 +1,363 @@
@@ -0,0 +1,363 @@
|
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
#include "sm_30_intrinsics.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
#include <stdint.h> |
||||
|
||||
// aus cpu-miner.c |
||||
extern "C" int device_map[8]; |
||||
|
||||
// diese Struktur wird in der Init Funktion angefordert |
||||
static cudaDeviceProp props[8]; |
||||
|
||||
static uint32_t *d_tempBranch1Nonces[8]; |
||||
static uint32_t *d_numValid[8]; |
||||
static uint32_t *h_numValid[8]; |
||||
|
||||
static uint32_t *d_partSum[2][8]; // für bis zu vier partielle Summen |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// True/False tester |
||||
typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash); |
||||
|
||||
__device__ uint32_t QuarkTrueTest(uint32_t *inpHash) |
||||
{ |
||||
return ((inpHash[0] & 0x08) == 0x08); |
||||
} |
||||
|
||||
__device__ uint32_t QuarkFalseTest(uint32_t *inpHash) |
||||
{ |
||||
return ((inpHash[0] & 0x08) == 0); |
||||
} |
||||
|
||||
__device__ cuda_compactTestFunction_t d_QuarkTrueFunction = QuarkTrueTest, d_QuarkFalseFunction = QuarkFalseTest; |
||||
cuda_compactTestFunction_t h_QuarkTrueFunction[8], h_QuarkFalseFunction[8]; |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_compactTest_cpu_init(int thr_id, int threads) |
||||
{ |
||||
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]); |
||||
|
||||
cudaMemcpyFromSymbol(&h_QuarkTrueFunction[thr_id], d_QuarkTrueFunction, sizeof(cuda_compactTestFunction_t)); |
||||
cudaMemcpyFromSymbol(&h_QuarkFalseFunction[thr_id], d_QuarkFalseFunction, sizeof(cuda_compactTestFunction_t)); |
||||
|
||||
// wir brauchen auch Speicherplatz auf dem Device |
||||
cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2); |
||||
cudaMalloc(&d_numValid[thr_id], 2*sizeof(uint32_t)); |
||||
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t)); |
||||
|
||||
uint32_t s1; |
||||
s1 = (threads / 256) * 2; |
||||
|
||||
cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
||||
cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block) |
||||
} |
||||
|
||||
// Die Summenfunktion (vom NVIDIA SDK) |
||||
__global__ void quark_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) |
||||
{ |
||||
extern __shared__ uint32_t sums[]; |
||||
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
||||
//int lane_id = id % warpSize; |
||||
int lane_id = id % width; |
||||
// determine a warp_id within a block |
||||
//int warp_id = threadIdx.x / warpSize; |
||||
int warp_id = threadIdx.x / width; |
||||
|
||||
sums[lane_id] = 0; |
||||
|
||||
// Below is the basic structure of using a shfl instruction |
||||
// for a scan. |
||||
// Record "value" as a variable - we accumulate it along the way |
||||
uint32_t value; |
||||
if(testFunc != NULL) |
||||
{ |
||||
if (id < threads) |
||||
{ |
||||
uint32_t *inpHash; |
||||
if(d_validNonceTable == NULL) |
||||
{ |
||||
// keine Nonce-Liste |
||||
inpHash = &inpHashes[id<<4]; |
||||
}else |
||||
{ |
||||
// Nonce-Liste verfügbar |
||||
int nonce = d_validNonceTable[id] - startNounce; |
||||
inpHash = &inpHashes[nonce<<4]; |
||||
} |
||||
value = (*testFunc)(inpHash); |
||||
}else |
||||
{ |
||||
value = 0; |
||||
} |
||||
}else |
||||
{ |
||||
value = data[id]; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
// Now accumulate in log steps up the chain |
||||
// compute sums, with another thread's value who is |
||||
// distance delta away (i). Note |
||||
// those threads where the thread 'i' away would have |
||||
// been out of bounds of the warp are unaffected. This |
||||
// creates the scan sum. |
||||
#pragma unroll |
||||
|
||||
for (int i=1; i<=width; i*=2) |
||||
{ |
||||
uint32_t n = __shfl_up((int)value, i, width); |
||||
|
||||
if (lane_id >= i) value += n; |
||||
} |
||||
|
||||
// value now holds the scan value for the individual thread |
||||
// next sum the largest values for each warp |
||||
|
||||
// write the sum of the warp to smem |
||||
//if (threadIdx.x % warpSize == warpSize-1) |
||||
if (threadIdx.x % width == width-1) |
||||
{ |
||||
sums[warp_id] = value; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
// |
||||
// scan sum the warp sums |
||||
// the same shfl scan operation, but performed on warp sums |
||||
// |
||||
if (warp_id == 0) |
||||
{ |
||||
uint32_t warp_sum = sums[lane_id]; |
||||
|
||||
for (int i=1; i<=width; i*=2) |
||||
{ |
||||
uint32_t n = __shfl_up((int)warp_sum, i, width); |
||||
|
||||
if (lane_id >= i) warp_sum += n; |
||||
} |
||||
|
||||
sums[lane_id] = warp_sum; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
|
||||
// perform a uniform add across warps in the block |
||||
// read neighbouring warp's sum and add it to threads value |
||||
uint32_t blockSum = 0; |
||||
|
||||
if (warp_id > 0) |
||||
{ |
||||
blockSum = sums[warp_id-1]; |
||||
} |
||||
|
||||
value += blockSum; |
||||
|
||||
// Now write out our result |
||||
data[id] = value; |
||||
|
||||
// last thread has sum, write write out the block's sum |
||||
if (partial_sums != NULL && threadIdx.x == blockDim.x-1) |
||||
{ |
||||
partial_sums[blockIdx.x] = value; |
||||
} |
||||
} |
||||
|
||||
// Uniform add: add partial sums array |
||||
__global__ void quark_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len) |
||||
{ |
||||
__shared__ uint32_t buf; |
||||
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
||||
|
||||
if (id > len) return; |
||||
|
||||
if (threadIdx.x == 0) |
||||
{ |
||||
buf = partial_sums[blockIdx.x]; |
||||
} |
||||
|
||||
__syncthreads(); |
||||
data[id] += buf; |
||||
} |
||||
|
||||
// Der Scatter |
||||
__global__ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL) |
||||
{ |
||||
int id = ((blockIdx.x * blockDim.x) + threadIdx.x); |
||||
uint32_t actNounce = id; |
||||
uint32_t value; |
||||
if (id < threads) |
||||
{ |
||||
// uint32_t nounce = startNounce + id; |
||||
uint32_t *inpHash; |
||||
if(d_validNonceTable == NULL) |
||||
{ |
||||
// keine Nonce-Liste |
||||
inpHash = &inpHashes[id<<4]; |
||||
}else |
||||
{ |
||||
// Nonce-Liste verfügbar |
||||
int nonce = d_validNonceTable[id] - startNounce; |
||||
actNounce = nonce; |
||||
inpHash = &inpHashes[nonce<<4]; |
||||
} |
||||
|
||||
value = (*testFunc)(inpHash); |
||||
}else |
||||
{ |
||||
value = 0; |
||||
} |
||||
|
||||
if( value ) |
||||
{ |
||||
int idx = sum[id]; |
||||
if(idx > 0) |
||||
outp[idx-1] = startNounce + actNounce; |
||||
} |
||||
} |
||||
|
||||
__host__ static uint32_t quark_compactTest_roundUpExp(uint32_t val) |
||||
{ |
||||
if(val == 0) |
||||
return 0; |
||||
|
||||
uint32_t mask = 0x80000000; |
||||
while( (val & mask) == 0 ) mask = mask >> 1; |
||||
|
||||
if( (val & (~mask)) != 0 ) |
||||
return mask << 1; |
||||
|
||||
return mask; |
||||
} |
||||
|
||||
__host__ void quark_compactTest_cpu_singleCompaction(int thr_id, int threads, uint32_t *nrm, |
||||
uint32_t *d_nonces1, cuda_compactTestFunction_t function, |
||||
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) |
||||
{ |
||||
int orgThreads = threads; |
||||
threads = (int)quark_compactTest_roundUpExp((uint32_t)threads); |
||||
// threadsPerBlock ausrechnen |
||||
int blockSize = 256; |
||||
int nSummen = threads / blockSize; |
||||
|
||||
int thr1 = (threads+blockSize-1) / blockSize; |
||||
int thr2 = threads / (blockSize*blockSize); |
||||
int blockSize2 = (nSummen < blockSize) ? nSummen : blockSize; |
||||
int thr3 = (nSummen + blockSize2-1) / blockSize2; |
||||
|
||||
bool callThrid = (thr2 > 0) ? true : false; |
||||
|
||||
// Erster Initialscan |
||||
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>( |
||||
d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable); |
||||
|
||||
// weitere Scans |
||||
if(callThrid) |
||||
{ |
||||
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]); |
||||
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2); |
||||
}else |
||||
{ |
||||
quark_compactTest_gpu_SCAN<<<thr3,blockSize2, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2); |
||||
} |
||||
|
||||
// Sync + Anzahl merken |
||||
cudaStreamSynchronize(NULL); |
||||
|
||||
if(callThrid) |
||||
cudaMemcpy(nrm, &(d_partSum[1][thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
else |
||||
cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
|
||||
|
||||
// Addieren |
||||
if(callThrid) |
||||
{ |
||||
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2); |
||||
} |
||||
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads); |
||||
|
||||
// Scatter |
||||
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, |
||||
function, orgThreads, startNounce, inpHashes, d_validNonceTable); |
||||
|
||||
// Sync |
||||
cudaStreamSynchronize(NULL); |
||||
} |
||||
|
||||
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048) |
||||
__host__ void quark_compactTest_cpu_dualCompaction(int thr_id, int threads, uint32_t *nrm, |
||||
uint32_t *d_nonces1, uint32_t *d_nonces2, |
||||
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable) |
||||
{ |
||||
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_QuarkTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable); |
||||
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable); |
||||
|
||||
/* |
||||
// threadsPerBlock ausrechnen |
||||
int blockSize = 256; |
||||
int thr1 = threads / blockSize; |
||||
int thr2 = threads / (blockSize*blockSize); |
||||
|
||||
// 1 |
||||
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes); |
||||
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
||||
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
||||
cudaStreamSynchronize(NULL); |
||||
cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
||||
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
||||
|
||||
// 2 |
||||
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes); |
||||
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]); |
||||
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2); |
||||
cudaStreamSynchronize(NULL); |
||||
cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
||||
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2); |
||||
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads); |
||||
|
||||
// Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten |
||||
// Schritt 3: Scatter |
||||
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes); |
||||
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch2Nonces[thr_id], d_nonces2, h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes); |
||||
cudaStreamSynchronize(NULL); |
||||
*/ |
||||
} |
||||
|
||||
__host__ void quark_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
uint32_t *d_nonces2, size_t *nrm2, |
||||
int order) |
||||
{ |
||||
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind |
||||
// "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen! |
||||
|
||||
quark_compactTest_cpu_dualCompaction(thr_id, threads, |
||||
h_numValid[thr_id], d_nonces1, d_nonces2, |
||||
startNounce, inpHashes, d_validNonceTable); |
||||
|
||||
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser |
||||
*nrm1 = (size_t)h_numValid[thr_id][0]; |
||||
*nrm2 = (size_t)h_numValid[thr_id][1]; |
||||
} |
||||
|
||||
__host__ void quark_compactTest_single_false_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
int order) |
||||
{ |
||||
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind |
||||
// "threads" ist in diesem Fall auf die Länge dieses Array's zu setzen! |
||||
|
||||
quark_compactTest_cpu_singleCompaction(thr_id, threads, h_numValid[thr_id], d_nonces1, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable); |
||||
|
||||
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser |
||||
*nrm1 = (size_t)h_numValid[thr_id][0]; |
||||
} |
@ -0,0 +1,182 @@
@@ -0,0 +1,182 @@
|
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
typedef unsigned long long uint64_t; |
||||
|
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
#include "cuda_helper.h" |
||||
|
||||
#define U32TO64_LE(p) \ |
||||
(((uint64_t)(*p)) | (((uint64_t)(*(p + 1))) << 32)) |
||||
|
||||
#define U64TO32_LE(p, v) \ |
||||
*p = (uint32_t)((v)); *(p+1) = (uint32_t)((v) >> 32); |
||||
|
||||
static const uint64_t host_keccak_round_constants[24] = { |
||||
0x0000000000000001ull, 0x0000000000008082ull, |
||||
0x800000000000808aull, 0x8000000080008000ull, |
||||
0x000000000000808bull, 0x0000000080000001ull, |
||||
0x8000000080008081ull, 0x8000000000008009ull, |
||||
0x000000000000008aull, 0x0000000000000088ull, |
||||
0x0000000080008009ull, 0x000000008000000aull, |
||||
0x000000008000808bull, 0x800000000000008bull, |
||||
0x8000000000008089ull, 0x8000000000008003ull, |
||||
0x8000000000008002ull, 0x8000000000000080ull, |
||||
0x000000000000800aull, 0x800000008000000aull, |
||||
0x8000000080008081ull, 0x8000000000008080ull, |
||||
0x0000000080000001ull, 0x8000000080008008ull |
||||
}; |
||||
|
||||
__constant__ uint64_t c_keccak_round_constants[24]; |
||||
|
||||
static __device__ __forceinline__ void |
||||
keccak_block(uint64_t *s, const uint32_t *in, const uint64_t *keccak_round_constants) { |
||||
size_t i; |
||||
uint64_t t[5], u[5], v, w; |
||||
|
||||
/* absorb input */ |
||||
#pragma unroll 9 |
||||
for (i = 0; i < 72 / 8; i++, in += 2) |
||||
s[i] ^= U32TO64_LE(in); |
||||
|
||||
for (i = 0; i < 24; i++) { |
||||
/* theta: c = a[0,i] ^ a[1,i] ^ .. a[4,i] */ |
||||
t[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20]; |
||||
t[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21]; |
||||
t[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22]; |
||||
t[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23]; |
||||
t[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24]; |
||||
|
||||
/* theta: d[i] = c[i+4] ^ rotl(c[i+1],1) */ |
||||
u[0] = t[4] ^ ROTL64(t[1], 1); |
||||
u[1] = t[0] ^ ROTL64(t[2], 1); |
||||
u[2] = t[1] ^ ROTL64(t[3], 1); |
||||
u[3] = t[2] ^ ROTL64(t[4], 1); |
||||
u[4] = t[3] ^ ROTL64(t[0], 1); |
||||
|
||||
/* theta: a[0,i], a[1,i], .. a[4,i] ^= d[i] */ |
||||
s[0] ^= u[0]; s[5] ^= u[0]; s[10] ^= u[0]; s[15] ^= u[0]; s[20] ^= u[0]; |
||||
s[1] ^= u[1]; s[6] ^= u[1]; s[11] ^= u[1]; s[16] ^= u[1]; s[21] ^= u[1]; |
||||
s[2] ^= u[2]; s[7] ^= u[2]; s[12] ^= u[2]; s[17] ^= u[2]; s[22] ^= u[2]; |
||||
s[3] ^= u[3]; s[8] ^= u[3]; s[13] ^= u[3]; s[18] ^= u[3]; s[23] ^= u[3]; |
||||
s[4] ^= u[4]; s[9] ^= u[4]; s[14] ^= u[4]; s[19] ^= u[4]; s[24] ^= u[4]; |
||||
|
||||
/* rho pi: b[..] = rotl(a[..], ..) */ |
||||
v = s[ 1]; |
||||
s[ 1] = ROTL64(s[ 6], 44); |
||||
s[ 6] = ROTL64(s[ 9], 20); |
||||
s[ 9] = ROTL64(s[22], 61); |
||||
s[22] = ROTL64(s[14], 39); |
||||
s[14] = ROTL64(s[20], 18); |
||||
s[20] = ROTL64(s[ 2], 62); |
||||
s[ 2] = ROTL64(s[12], 43); |
||||
s[12] = ROTL64(s[13], 25); |
||||
s[13] = ROTL64(s[19], 8); |
||||
s[19] = ROTL64(s[23], 56); |
||||
s[23] = ROTL64(s[15], 41); |
||||
s[15] = ROTL64(s[ 4], 27); |
||||
s[ 4] = ROTL64(s[24], 14); |
||||
s[24] = ROTL64(s[21], 2); |
||||
s[21] = ROTL64(s[ 8], 55); |
||||
s[ 8] = ROTL64(s[16], 45); |
||||
s[16] = ROTL64(s[ 5], 36); |
||||
s[ 5] = ROTL64(s[ 3], 28); |
||||
s[ 3] = ROTL64(s[18], 21); |
||||
s[18] = ROTL64(s[17], 15); |
||||
s[17] = ROTL64(s[11], 10); |
||||
s[11] = ROTL64(s[ 7], 6); |
||||
s[ 7] = ROTL64(s[10], 3); |
||||
s[10] = ROTL64( v, 1); |
||||
|
||||
/* chi: a[i,j] ^= ~b[i,j+1] & b[i,j+2] */ |
||||
v = s[ 0]; w = s[ 1]; s[ 0] ^= (~w) & s[ 2]; s[ 1] ^= (~s[ 2]) & s[ 3]; s[ 2] ^= (~s[ 3]) & s[ 4]; s[ 3] ^= (~s[ 4]) & v; s[ 4] ^= (~v) & w; |
||||
v = s[ 5]; w = s[ 6]; s[ 5] ^= (~w) & s[ 7]; s[ 6] ^= (~s[ 7]) & s[ 8]; s[ 7] ^= (~s[ 8]) & s[ 9]; s[ 8] ^= (~s[ 9]) & v; s[ 9] ^= (~v) & w; |
||||
v = s[10]; w = s[11]; s[10] ^= (~w) & s[12]; s[11] ^= (~s[12]) & s[13]; s[12] ^= (~s[13]) & s[14]; s[13] ^= (~s[14]) & v; s[14] ^= (~v) & w; |
||||
v = s[15]; w = s[16]; s[15] ^= (~w) & s[17]; s[16] ^= (~s[17]) & s[18]; s[17] ^= (~s[18]) & s[19]; s[18] ^= (~s[19]) & v; s[19] ^= (~v) & w; |
||||
v = s[20]; w = s[21]; s[20] ^= (~w) & s[22]; s[21] ^= (~s[22]) & s[23]; s[22] ^= (~s[23]) & s[24]; s[23] ^= (~s[24]) & v; s[24] ^= (~v) & w; |
||||
|
||||
/* iota: a[0,0] ^= round constant */ |
||||
s[0] ^= keccak_round_constants[i]; |
||||
} |
||||
} |
||||
|
||||
__global__ void quark_keccak512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
|
||||
// Nachricht kopieren |
||||
uint32_t message[18]; |
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
message[i] = inpHash[i]; |
||||
|
||||
message[16] = 0x01; |
||||
message[17] = 0x80000000; |
||||
|
||||
// State initialisieren |
||||
uint64_t keccak_gpu_state[25]; |
||||
#pragma unroll 25 |
||||
for (int i=0; i<25; i++) |
||||
keccak_gpu_state[i] = 0; |
||||
|
||||
// den Block einmal gut durchschütteln |
||||
keccak_block(keccak_gpu_state, message, c_keccak_round_constants); |
||||
|
||||
// das Hash erzeugen |
||||
uint32_t hash[16]; |
||||
|
||||
#pragma unroll 8 |
||||
for (size_t i = 0; i < 64; i += 8) { |
||||
U64TO32_LE((&hash[i/4]), keccak_gpu_state[i / 8]); |
||||
} |
||||
|
||||
// fertig |
||||
uint32_t *outpHash = (uint32_t*)&g_hash[8 * hashPosition]; |
||||
|
||||
#pragma unroll 16 |
||||
for(int i=0;i<16;i++) |
||||
outpHash[i] = hash[i]; |
||||
} |
||||
} |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_keccak512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// Kopiere die Hash-Tabellen in den GPU-Speicher |
||||
cudaMemcpyToSymbol( c_keccak_round_constants, |
||||
host_keccak_round_constants, |
||||
sizeof(host_keccak_round_constants), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
|
||||
quark_keccak512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
@ -1,450 +1,450 @@
@@ -1,450 +1,450 @@
|
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
typedef unsigned long long uint64_t; |
||||
|
||||
#define SPH_C64(x) ((uint64_t)(x ## ULL)) |
||||
|
||||
// aus cpu-miner.c |
||||
extern "C" extern int device_map[8]; |
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// Take a look at: https://www.schneier.com/skein1.3.pdf |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
__forceinline__ __device__ uint64_t ROTL64(const uint64_t value, const int offset) { |
||||
uint2 result; |
||||
if(offset >= 32) { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
} else { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
} |
||||
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
||||
} |
||||
#else |
||||
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) |
||||
#endif |
||||
#define SHL(x, n) ((x) << (n)) |
||||
#define SHR(x, n) ((x) >> (n)) |
||||
|
||||
// Zum testen Hostcode... |
||||
/* Hier erstmal die Tabelle mit den Konstanten für die Mix-Funktion. Kann später vll. |
||||
mal direkt in den Code eingesetzt werden |
||||
*/ |
||||
|
||||
/* |
||||
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7). |
||||
*/ |
||||
|
||||
#define M9_0_0 0 |
||||
#define M9_0_1 1 |
||||
#define M9_0_2 2 |
||||
#define M9_0_3 3 |
||||
#define M9_0_4 4 |
||||
#define M9_0_5 5 |
||||
#define M9_0_6 6 |
||||
#define M9_0_7 7 |
||||
|
||||
#define M9_1_0 1 |
||||
#define M9_1_1 2 |
||||
#define M9_1_2 3 |
||||
#define M9_1_3 4 |
||||
#define M9_1_4 5 |
||||
#define M9_1_5 6 |
||||
#define M9_1_6 7 |
||||
#define M9_1_7 8 |
||||
|
||||
#define M9_2_0 2 |
||||
#define M9_2_1 3 |
||||
#define M9_2_2 4 |
||||
#define M9_2_3 5 |
||||
#define M9_2_4 6 |
||||
#define M9_2_5 7 |
||||
#define M9_2_6 8 |
||||
#define M9_2_7 0 |
||||
|
||||
#define M9_3_0 3 |
||||
#define M9_3_1 4 |
||||
#define M9_3_2 5 |
||||
#define M9_3_3 6 |
||||
#define M9_3_4 7 |
||||
#define M9_3_5 8 |
||||
#define M9_3_6 0 |
||||
#define M9_3_7 1 |
||||
|
||||
#define M9_4_0 4 |
||||
#define M9_4_1 5 |
||||
#define M9_4_2 6 |
||||
#define M9_4_3 7 |
||||
#define M9_4_4 8 |
||||
#define M9_4_5 0 |
||||
#define M9_4_6 1 |
||||
#define M9_4_7 2 |
||||
|
||||
#define M9_5_0 5 |
||||
#define M9_5_1 6 |
||||
#define M9_5_2 7 |
||||
#define M9_5_3 8 |
||||
#define M9_5_4 0 |
||||
#define M9_5_5 1 |
||||
#define M9_5_6 2 |
||||
#define M9_5_7 3 |
||||
|
||||
#define M9_6_0 6 |
||||
#define M9_6_1 7 |
||||
#define M9_6_2 8 |
||||
#define M9_6_3 0 |
||||
#define M9_6_4 1 |
||||
#define M9_6_5 2 |
||||
#define M9_6_6 3 |
||||
#define M9_6_7 4 |
||||
|
||||
#define M9_7_0 7 |
||||
#define M9_7_1 8 |
||||
#define M9_7_2 0 |
||||
#define M9_7_3 1 |
||||
#define M9_7_4 2 |
||||
#define M9_7_5 3 |
||||
#define M9_7_6 4 |
||||
#define M9_7_7 5 |
||||
|
||||
#define M9_8_0 8 |
||||
#define M9_8_1 0 |
||||
#define M9_8_2 1 |
||||
#define M9_8_3 2 |
||||
#define M9_8_4 3 |
||||
#define M9_8_5 4 |
||||
#define M9_8_6 5 |
||||
#define M9_8_7 6 |
||||
|
||||
#define M9_9_0 0 |
||||
#define M9_9_1 1 |
||||
#define M9_9_2 2 |
||||
#define M9_9_3 3 |
||||
#define M9_9_4 4 |
||||
#define M9_9_5 5 |
||||
#define M9_9_6 6 |
||||
#define M9_9_7 7 |
||||
|
||||
#define M9_10_0 1 |
||||
#define M9_10_1 2 |
||||
#define M9_10_2 3 |
||||
#define M9_10_3 4 |
||||
#define M9_10_4 5 |
||||
#define M9_10_5 6 |
||||
#define M9_10_6 7 |
||||
#define M9_10_7 8 |
||||
|
||||
#define M9_11_0 2 |
||||
#define M9_11_1 3 |
||||
#define M9_11_2 4 |
||||
#define M9_11_3 5 |
||||
#define M9_11_4 6 |
||||
#define M9_11_5 7 |
||||
#define M9_11_6 8 |
||||
#define M9_11_7 0 |
||||
|
||||
#define M9_12_0 3 |
||||
#define M9_12_1 4 |
||||
#define M9_12_2 5 |
||||
#define M9_12_3 6 |
||||
#define M9_12_4 7 |
||||
#define M9_12_5 8 |
||||
#define M9_12_6 0 |
||||
#define M9_12_7 1 |
||||
|
||||
#define M9_13_0 4 |
||||
#define M9_13_1 5 |
||||
#define M9_13_2 6 |
||||
#define M9_13_3 7 |
||||
#define M9_13_4 8 |
||||
#define M9_13_5 0 |
||||
#define M9_13_6 1 |
||||
#define M9_13_7 2 |
||||
|
||||
#define M9_14_0 5 |
||||
#define M9_14_1 6 |
||||
#define M9_14_2 7 |
||||
#define M9_14_3 8 |
||||
#define M9_14_4 0 |
||||
#define M9_14_5 1 |
||||
#define M9_14_6 2 |
||||
#define M9_14_7 3 |
||||
|
||||
#define M9_15_0 6 |
||||
#define M9_15_1 7 |
||||
#define M9_15_2 8 |
||||
#define M9_15_3 0 |
||||
#define M9_15_4 1 |
||||
#define M9_15_5 2 |
||||
#define M9_15_6 3 |
||||
#define M9_15_7 4 |
||||
|
||||
#define M9_16_0 7 |
||||
#define M9_16_1 8 |
||||
#define M9_16_2 0 |
||||
#define M9_16_3 1 |
||||
#define M9_16_4 2 |
||||
#define M9_16_5 3 |
||||
#define M9_16_6 4 |
||||
#define M9_16_7 5 |
||||
|
||||
#define M9_17_0 8 |
||||
#define M9_17_1 0 |
||||
#define M9_17_2 1 |
||||
#define M9_17_3 2 |
||||
#define M9_17_4 3 |
||||
#define M9_17_5 4 |
||||
#define M9_17_6 5 |
||||
#define M9_17_7 6 |
||||
|
||||
#define M9_18_0 0 |
||||
#define M9_18_1 1 |
||||
#define M9_18_2 2 |
||||
#define M9_18_3 3 |
||||
#define M9_18_4 4 |
||||
#define M9_18_5 5 |
||||
#define M9_18_6 6 |
||||
#define M9_18_7 7 |
||||
|
||||
/* |
||||
* M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1). |
||||
*/ |
||||
|
||||
#define M3_0_0 0 |
||||
#define M3_0_1 1 |
||||
#define M3_1_0 1 |
||||
#define M3_1_1 2 |
||||
#define M3_2_0 2 |
||||
#define M3_2_1 0 |
||||
#define M3_3_0 0 |
||||
#define M3_3_1 1 |
||||
#define M3_4_0 1 |
||||
#define M3_4_1 2 |
||||
#define M3_5_0 2 |
||||
#define M3_5_1 0 |
||||
#define M3_6_0 0 |
||||
#define M3_6_1 1 |
||||
#define M3_7_0 1 |
||||
#define M3_7_1 2 |
||||
#define M3_8_0 2 |
||||
#define M3_8_1 0 |
||||
#define M3_9_0 0 |
||||
#define M3_9_1 1 |
||||
#define M3_10_0 1 |
||||
#define M3_10_1 2 |
||||
#define M3_11_0 2 |
||||
#define M3_11_1 0 |
||||
#define M3_12_0 0 |
||||
#define M3_12_1 1 |
||||
#define M3_13_0 1 |
||||
#define M3_13_1 2 |
||||
#define M3_14_0 2 |
||||
#define M3_14_1 0 |
||||
#define M3_15_0 0 |
||||
#define M3_15_1 1 |
||||
#define M3_16_0 1 |
||||
#define M3_16_1 2 |
||||
#define M3_17_0 2 |
||||
#define M3_17_1 0 |
||||
#define M3_18_0 0 |
||||
#define M3_18_1 1 |
||||
|
||||
#define XCAT(x, y) XCAT_(x, y) |
||||
#define XCAT_(x, y) x ## y |
||||
|
||||
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i)) |
||||
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v)) |
||||
|
||||
#define TFBIG_KINIT(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \ |
||||
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \ |
||||
^ SPH_C64(0x1BD11BDAA9FC1A22); \ |
||||
t2 = t0 ^ t1; \ |
||||
} |
||||
|
||||
#define TFBIG_ADDKEY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \ |
||||
w0 = (w0 + SKBI(k, s, 0)); \ |
||||
w1 = (w1 + SKBI(k, s, 1)); \ |
||||
w2 = (w2 + SKBI(k, s, 2)); \ |
||||
w3 = (w3 + SKBI(k, s, 3)); \ |
||||
w4 = (w4 + SKBI(k, s, 4)); \ |
||||
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ |
||||
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ |
||||
w7 = (w7 + SKBI(k, s, 7) + (uint64_t)s); \ |
||||
} |
||||
|
||||
#define TFBIG_MIX(x0, x1, rc) { \ |
||||
x0 = x0 + x1; \ |
||||
x1 = ROTL64(x1, rc) ^ x0; \ |
||||
} |
||||
|
||||
#define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \ |
||||
TFBIG_MIX(w0, w1, rc0); \ |
||||
TFBIG_MIX(w2, w3, rc1); \ |
||||
TFBIG_MIX(w4, w5, rc2); \ |
||||
TFBIG_MIX(w6, w7, rc3); \ |
||||
} |
||||
|
||||
#define TFBIG_4e(s) { \ |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ |
||||
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \ |
||||
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \ |
||||
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \ |
||||
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \ |
||||
} |
||||
|
||||
#define TFBIG_4o(s) { \ |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ |
||||
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \ |
||||
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \ |
||||
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \ |
||||
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \ |
||||
} |
||||
|
||||
static __constant__ uint64_t d_constMem[8]; |
||||
static uint64_t h_constMem[8] = { |
||||
SPH_C64(0x4903ADFF749C51CE), |
||||
SPH_C64(0x0D95DE399746DF03), |
||||
SPH_C64(0x8FD1934127C79BCE), |
||||
SPH_C64(0x9A255629FF352CB1), |
||||
SPH_C64(0x5DB62599DF6CA7B0), |
||||
SPH_C64(0xEABE394CA9D5C3F4), |
||||
SPH_C64(0x991112C71A75B523), |
||||
SPH_C64(0xAE18A40B660FCC33) }; |
||||
|
||||
__global__ void quark_skein512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
// Skein |
||||
uint64_t p[8]; |
||||
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8; |
||||
uint64_t t0, t1, t2; |
||||
|
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint64_t *inpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
// Initialisierung |
||||
h0 = d_constMem[0]; |
||||
h1 = d_constMem[1]; |
||||
h2 = d_constMem[2]; |
||||
h3 = d_constMem[3]; |
||||
h4 = d_constMem[4]; |
||||
h5 = d_constMem[5]; |
||||
h6 = d_constMem[6]; |
||||
h7 = d_constMem[7]; |
||||
|
||||
// 1. Runde -> etype = 480, ptr = 64, bcount = 0, data = msg |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
p[i] = inpHash[i]; |
||||
|
||||
t0 = 64; // ptr |
||||
t1 = 480ull << 55; // etype |
||||
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); |
||||
TFBIG_4e(0); |
||||
TFBIG_4o(1); |
||||
TFBIG_4e(2); |
||||
TFBIG_4o(3); |
||||
TFBIG_4e(4); |
||||
TFBIG_4o(5); |
||||
TFBIG_4e(6); |
||||
TFBIG_4o(7); |
||||
TFBIG_4e(8); |
||||
TFBIG_4o(9); |
||||
TFBIG_4e(10); |
||||
TFBIG_4o(11); |
||||
TFBIG_4e(12); |
||||
TFBIG_4o(13); |
||||
TFBIG_4e(14); |
||||
TFBIG_4o(15); |
||||
TFBIG_4e(16); |
||||
TFBIG_4o(17); |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); |
||||
|
||||
h0 = inpHash[0] ^ p[0]; |
||||
h1 = inpHash[1] ^ p[1]; |
||||
h2 = inpHash[2] ^ p[2]; |
||||
h3 = inpHash[3] ^ p[3]; |
||||
h4 = inpHash[4] ^ p[4]; |
||||
h5 = inpHash[5] ^ p[5]; |
||||
h6 = inpHash[6] ^ p[6]; |
||||
h7 = inpHash[7] ^ p[7]; |
||||
|
||||
// 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0 |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
p[i] = 0; |
||||
|
||||
t0 = 8; // ptr |
||||
t1 = 510ull << 55; // etype |
||||
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); |
||||
TFBIG_4e(0); |
||||
TFBIG_4o(1); |
||||
TFBIG_4e(2); |
||||
TFBIG_4o(3); |
||||
TFBIG_4e(4); |
||||
TFBIG_4o(5); |
||||
TFBIG_4e(6); |
||||
TFBIG_4o(7); |
||||
TFBIG_4e(8); |
||||
TFBIG_4o(9); |
||||
TFBIG_4e(10); |
||||
TFBIG_4o(11); |
||||
TFBIG_4e(12); |
||||
TFBIG_4o(13); |
||||
TFBIG_4e(14); |
||||
TFBIG_4o(15); |
||||
TFBIG_4e(16); |
||||
TFBIG_4o(17); |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); |
||||
|
||||
// fertig |
||||
uint64_t *outpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
outpHash[i] = p[i]; |
||||
} |
||||
} |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_skein512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// nix zu tun ;-) |
||||
cudaMemcpyToSymbol( d_constMem, |
||||
h_constMem, |
||||
sizeof(h_constMem), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
quark_skein512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
#include <cuda.h> |
||||
#include "cuda_runtime.h" |
||||
#include "device_launch_parameters.h" |
||||
|
||||
#include <stdio.h> |
||||
#include <memory.h> |
||||
|
||||
// Folgende Definitionen später durch header ersetzen |
||||
typedef unsigned char uint8_t; |
||||
typedef unsigned int uint32_t; |
||||
typedef unsigned long long uint64_t; |
||||
|
||||
#define SPH_C64(x) ((uint64_t)(x ## ULL)) |
||||
|
||||
// aus cpu-miner.c |
||||
extern "C" extern int device_map[8]; |
||||
// aus heavy.cu |
||||
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); |
||||
|
||||
// Take a look at: https://www.schneier.com/skein1.3.pdf |
||||
|
||||
#if __CUDA_ARCH__ >= 350 |
||||
__forceinline__ __device__ uint64_t ROTL64(const uint64_t value, const int offset) { |
||||
uint2 result; |
||||
if(offset >= 32) { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
} else { |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.x) : "r"(__double2hiint(__longlong_as_double(value))), "r"(__double2loint(__longlong_as_double(value))), "r"(offset)); |
||||
asm("shf.l.wrap.b32 %0, %1, %2, %3;" : "=r"(result.y) : "r"(__double2loint(__longlong_as_double(value))), "r"(__double2hiint(__longlong_as_double(value))), "r"(offset)); |
||||
} |
||||
return __double_as_longlong(__hiloint2double(result.y, result.x)); |
||||
} |
||||
#else |
||||
#define ROTL64(x, n) (((x) << (n)) | ((x) >> (64 - (n)))) |
||||
#endif |
||||
#define SHL(x, n) ((x) << (n)) |
||||
#define SHR(x, n) ((x) >> (n)) |
||||
|
||||
// Zum testen Hostcode... |
||||
/* Hier erstmal die Tabelle mit den Konstanten für die Mix-Funktion. Kann später vll. |
||||
mal direkt in den Code eingesetzt werden |
||||
*/ |
||||
|
||||
/* |
||||
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7). |
||||
*/ |
||||
|
||||
#define M9_0_0 0 |
||||
#define M9_0_1 1 |
||||
#define M9_0_2 2 |
||||
#define M9_0_3 3 |
||||
#define M9_0_4 4 |
||||
#define M9_0_5 5 |
||||
#define M9_0_6 6 |
||||
#define M9_0_7 7 |
||||
|
||||
#define M9_1_0 1 |
||||
#define M9_1_1 2 |
||||
#define M9_1_2 3 |
||||
#define M9_1_3 4 |
||||
#define M9_1_4 5 |
||||
#define M9_1_5 6 |
||||
#define M9_1_6 7 |
||||
#define M9_1_7 8 |
||||
|
||||
#define M9_2_0 2 |
||||
#define M9_2_1 3 |
||||
#define M9_2_2 4 |
||||
#define M9_2_3 5 |
||||
#define M9_2_4 6 |
||||
#define M9_2_5 7 |
||||
#define M9_2_6 8 |
||||
#define M9_2_7 0 |
||||
|
||||
#define M9_3_0 3 |
||||
#define M9_3_1 4 |
||||
#define M9_3_2 5 |
||||
#define M9_3_3 6 |
||||
#define M9_3_4 7 |
||||
#define M9_3_5 8 |
||||
#define M9_3_6 0 |
||||
#define M9_3_7 1 |
||||
|
||||
#define M9_4_0 4 |
||||
#define M9_4_1 5 |
||||
#define M9_4_2 6 |
||||
#define M9_4_3 7 |
||||
#define M9_4_4 8 |
||||
#define M9_4_5 0 |
||||
#define M9_4_6 1 |
||||
#define M9_4_7 2 |
||||
|
||||
#define M9_5_0 5 |
||||
#define M9_5_1 6 |
||||
#define M9_5_2 7 |
||||
#define M9_5_3 8 |
||||
#define M9_5_4 0 |
||||
#define M9_5_5 1 |
||||
#define M9_5_6 2 |
||||
#define M9_5_7 3 |
||||
|
||||
#define M9_6_0 6 |
||||
#define M9_6_1 7 |
||||
#define M9_6_2 8 |
||||
#define M9_6_3 0 |
||||
#define M9_6_4 1 |
||||
#define M9_6_5 2 |
||||
#define M9_6_6 3 |
||||
#define M9_6_7 4 |
||||
|
||||
#define M9_7_0 7 |
||||
#define M9_7_1 8 |
||||
#define M9_7_2 0 |
||||
#define M9_7_3 1 |
||||
#define M9_7_4 2 |
||||
#define M9_7_5 3 |
||||
#define M9_7_6 4 |
||||
#define M9_7_7 5 |
||||
|
||||
#define M9_8_0 8 |
||||
#define M9_8_1 0 |
||||
#define M9_8_2 1 |
||||
#define M9_8_3 2 |
||||
#define M9_8_4 3 |
||||
#define M9_8_5 4 |
||||
#define M9_8_6 5 |
||||
#define M9_8_7 6 |
||||
|
||||
#define M9_9_0 0 |
||||
#define M9_9_1 1 |
||||
#define M9_9_2 2 |
||||
#define M9_9_3 3 |
||||
#define M9_9_4 4 |
||||
#define M9_9_5 5 |
||||
#define M9_9_6 6 |
||||
#define M9_9_7 7 |
||||
|
||||
#define M9_10_0 1 |
||||
#define M9_10_1 2 |
||||
#define M9_10_2 3 |
||||
#define M9_10_3 4 |
||||
#define M9_10_4 5 |
||||
#define M9_10_5 6 |
||||
#define M9_10_6 7 |
||||
#define M9_10_7 8 |
||||
|
||||
#define M9_11_0 2 |
||||
#define M9_11_1 3 |
||||
#define M9_11_2 4 |
||||
#define M9_11_3 5 |
||||
#define M9_11_4 6 |
||||
#define M9_11_5 7 |
||||
#define M9_11_6 8 |
||||
#define M9_11_7 0 |
||||
|
||||
#define M9_12_0 3 |
||||
#define M9_12_1 4 |
||||
#define M9_12_2 5 |
||||
#define M9_12_3 6 |
||||
#define M9_12_4 7 |
||||
#define M9_12_5 8 |
||||
#define M9_12_6 0 |
||||
#define M9_12_7 1 |
||||
|
||||
#define M9_13_0 4 |
||||
#define M9_13_1 5 |
||||
#define M9_13_2 6 |
||||
#define M9_13_3 7 |
||||
#define M9_13_4 8 |
||||
#define M9_13_5 0 |
||||
#define M9_13_6 1 |
||||
#define M9_13_7 2 |
||||
|
||||
#define M9_14_0 5 |
||||
#define M9_14_1 6 |
||||
#define M9_14_2 7 |
||||
#define M9_14_3 8 |
||||
#define M9_14_4 0 |
||||
#define M9_14_5 1 |
||||
#define M9_14_6 2 |
||||
#define M9_14_7 3 |
||||
|
||||
#define M9_15_0 6 |
||||
#define M9_15_1 7 |
||||
#define M9_15_2 8 |
||||
#define M9_15_3 0 |
||||
#define M9_15_4 1 |
||||
#define M9_15_5 2 |
||||
#define M9_15_6 3 |
||||
#define M9_15_7 4 |
||||
|
||||
#define M9_16_0 7 |
||||
#define M9_16_1 8 |
||||
#define M9_16_2 0 |
||||
#define M9_16_3 1 |
||||
#define M9_16_4 2 |
||||
#define M9_16_5 3 |
||||
#define M9_16_6 4 |
||||
#define M9_16_7 5 |
||||
|
||||
#define M9_17_0 8 |
||||
#define M9_17_1 0 |
||||
#define M9_17_2 1 |
||||
#define M9_17_3 2 |
||||
#define M9_17_4 3 |
||||
#define M9_17_5 4 |
||||
#define M9_17_6 5 |
||||
#define M9_17_7 6 |
||||
|
||||
#define M9_18_0 0 |
||||
#define M9_18_1 1 |
||||
#define M9_18_2 2 |
||||
#define M9_18_3 3 |
||||
#define M9_18_4 4 |
||||
#define M9_18_5 5 |
||||
#define M9_18_6 6 |
||||
#define M9_18_7 7 |
||||
|
||||
/* |
||||
* M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1). |
||||
*/ |
||||
|
||||
#define M3_0_0 0 |
||||
#define M3_0_1 1 |
||||
#define M3_1_0 1 |
||||
#define M3_1_1 2 |
||||
#define M3_2_0 2 |
||||
#define M3_2_1 0 |
||||
#define M3_3_0 0 |
||||
#define M3_3_1 1 |
||||
#define M3_4_0 1 |
||||
#define M3_4_1 2 |
||||
#define M3_5_0 2 |
||||
#define M3_5_1 0 |
||||
#define M3_6_0 0 |
||||
#define M3_6_1 1 |
||||
#define M3_7_0 1 |
||||
#define M3_7_1 2 |
||||
#define M3_8_0 2 |
||||
#define M3_8_1 0 |
||||
#define M3_9_0 0 |
||||
#define M3_9_1 1 |
||||
#define M3_10_0 1 |
||||
#define M3_10_1 2 |
||||
#define M3_11_0 2 |
||||
#define M3_11_1 0 |
||||
#define M3_12_0 0 |
||||
#define M3_12_1 1 |
||||
#define M3_13_0 1 |
||||
#define M3_13_1 2 |
||||
#define M3_14_0 2 |
||||
#define M3_14_1 0 |
||||
#define M3_15_0 0 |
||||
#define M3_15_1 1 |
||||
#define M3_16_0 1 |
||||
#define M3_16_1 2 |
||||
#define M3_17_0 2 |
||||
#define M3_17_1 0 |
||||
#define M3_18_0 0 |
||||
#define M3_18_1 1 |
||||
|
||||
#define XCAT(x, y) XCAT_(x, y) |
||||
#define XCAT_(x, y) x ## y |
||||
|
||||
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i)) |
||||
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v)) |
||||
|
||||
#define TFBIG_KINIT(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \ |
||||
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \ |
||||
^ SPH_C64(0x1BD11BDAA9FC1A22); \ |
||||
t2 = t0 ^ t1; \ |
||||
} |
||||
|
||||
#define TFBIG_ADDKEY(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \ |
||||
w0 = (w0 + SKBI(k, s, 0)); \ |
||||
w1 = (w1 + SKBI(k, s, 1)); \ |
||||
w2 = (w2 + SKBI(k, s, 2)); \ |
||||
w3 = (w3 + SKBI(k, s, 3)); \ |
||||
w4 = (w4 + SKBI(k, s, 4)); \ |
||||
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \ |
||||
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \ |
||||
w7 = (w7 + SKBI(k, s, 7) + (uint64_t)s); \ |
||||
} |
||||
|
||||
#define TFBIG_MIX(x0, x1, rc) { \ |
||||
x0 = x0 + x1; \ |
||||
x1 = ROTL64(x1, rc) ^ x0; \ |
||||
} |
||||
|
||||
#define TFBIG_MIX8(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \ |
||||
TFBIG_MIX(w0, w1, rc0); \ |
||||
TFBIG_MIX(w2, w3, rc1); \ |
||||
TFBIG_MIX(w4, w5, rc2); \ |
||||
TFBIG_MIX(w6, w7, rc3); \ |
||||
} |
||||
|
||||
#define TFBIG_4e(s) { \ |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ |
||||
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \ |
||||
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \ |
||||
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \ |
||||
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \ |
||||
} |
||||
|
||||
#define TFBIG_4o(s) { \ |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \ |
||||
TFBIG_MIX8(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \ |
||||
TFBIG_MIX8(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \ |
||||
TFBIG_MIX8(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \ |
||||
TFBIG_MIX8(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \ |
||||
} |
||||
|
||||
static __constant__ uint64_t d_constMem[8]; |
||||
static uint64_t h_constMem[8] = { |
||||
SPH_C64(0x4903ADFF749C51CE), |
||||
SPH_C64(0x0D95DE399746DF03), |
||||
SPH_C64(0x8FD1934127C79BCE), |
||||
SPH_C64(0x9A255629FF352CB1), |
||||
SPH_C64(0x5DB62599DF6CA7B0), |
||||
SPH_C64(0xEABE394CA9D5C3F4), |
||||
SPH_C64(0x991112C71A75B523), |
||||
SPH_C64(0xAE18A40B660FCC33) }; |
||||
|
||||
__global__ void quark_skein512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector) |
||||
{ |
||||
int thread = (blockDim.x * blockIdx.x + threadIdx.x); |
||||
if (thread < threads) |
||||
{ |
||||
// Skein |
||||
uint64_t p[8]; |
||||
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8; |
||||
uint64_t t0, t1, t2; |
||||
|
||||
uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread); |
||||
|
||||
int hashPosition = nounce - startNounce; |
||||
uint64_t *inpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
// Initialisierung |
||||
h0 = d_constMem[0]; |
||||
h1 = d_constMem[1]; |
||||
h2 = d_constMem[2]; |
||||
h3 = d_constMem[3]; |
||||
h4 = d_constMem[4]; |
||||
h5 = d_constMem[5]; |
||||
h6 = d_constMem[6]; |
||||
h7 = d_constMem[7]; |
||||
|
||||
// 1. Runde -> etype = 480, ptr = 64, bcount = 0, data = msg |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
p[i] = inpHash[i]; |
||||
|
||||
t0 = 64; // ptr |
||||
t1 = 480ull << 55; // etype |
||||
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); |
||||
TFBIG_4e(0); |
||||
TFBIG_4o(1); |
||||
TFBIG_4e(2); |
||||
TFBIG_4o(3); |
||||
TFBIG_4e(4); |
||||
TFBIG_4o(5); |
||||
TFBIG_4e(6); |
||||
TFBIG_4o(7); |
||||
TFBIG_4e(8); |
||||
TFBIG_4o(9); |
||||
TFBIG_4e(10); |
||||
TFBIG_4o(11); |
||||
TFBIG_4e(12); |
||||
TFBIG_4o(13); |
||||
TFBIG_4e(14); |
||||
TFBIG_4o(15); |
||||
TFBIG_4e(16); |
||||
TFBIG_4o(17); |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); |
||||
|
||||
h0 = inpHash[0] ^ p[0]; |
||||
h1 = inpHash[1] ^ p[1]; |
||||
h2 = inpHash[2] ^ p[2]; |
||||
h3 = inpHash[3] ^ p[3]; |
||||
h4 = inpHash[4] ^ p[4]; |
||||
h5 = inpHash[5] ^ p[5]; |
||||
h6 = inpHash[6] ^ p[6]; |
||||
h7 = inpHash[7] ^ p[7]; |
||||
|
||||
// 2. Runde -> etype = 510, ptr = 8, bcount = 0, data = 0 |
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
p[i] = 0; |
||||
|
||||
t0 = 8; // ptr |
||||
t1 = 510ull << 55; // etype |
||||
TFBIG_KINIT(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2); |
||||
TFBIG_4e(0); |
||||
TFBIG_4o(1); |
||||
TFBIG_4e(2); |
||||
TFBIG_4o(3); |
||||
TFBIG_4e(4); |
||||
TFBIG_4o(5); |
||||
TFBIG_4e(6); |
||||
TFBIG_4o(7); |
||||
TFBIG_4e(8); |
||||
TFBIG_4o(9); |
||||
TFBIG_4e(10); |
||||
TFBIG_4o(11); |
||||
TFBIG_4e(12); |
||||
TFBIG_4o(13); |
||||
TFBIG_4e(14); |
||||
TFBIG_4o(15); |
||||
TFBIG_4e(16); |
||||
TFBIG_4o(17); |
||||
TFBIG_ADDKEY(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18); |
||||
|
||||
// fertig |
||||
uint64_t *outpHash = &g_hash[8 * hashPosition]; |
||||
|
||||
#pragma unroll 8 |
||||
for(int i=0;i<8;i++) |
||||
outpHash[i] = p[i]; |
||||
} |
||||
} |
||||
|
||||
// Setup-Funktionen |
||||
__host__ void quark_skein512_cpu_init(int thr_id, int threads) |
||||
{ |
||||
// nix zu tun ;-) |
||||
cudaMemcpyToSymbol( d_constMem, |
||||
h_constMem, |
||||
sizeof(h_constMem), |
||||
0, cudaMemcpyHostToDevice); |
||||
} |
||||
|
||||
__host__ void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order) |
||||
{ |
||||
const int threadsperblock = 256; |
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen |
||||
dim3 grid((threads + threadsperblock-1)/threadsperblock); |
||||
dim3 block(threadsperblock); |
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs |
||||
size_t shared_size = 0; |
||||
|
||||
// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size); |
||||
quark_skein512_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector); |
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last |
||||
MyStreamSynchronize(NULL, order, thr_id); |
||||
} |
||||
|
@ -0,0 +1,274 @@
@@ -0,0 +1,274 @@
|
||||
|
||||
extern "C" |
||||
{ |
||||
#include "sph/sph_blake.h" |
||||
#include "sph/sph_bmw.h" |
||||
#include "sph/sph_groestl.h" |
||||
#include "sph/sph_skein.h" |
||||
#include "sph/sph_jh.h" |
||||
#include "sph/sph_keccak.h" |
||||
#include "miner.h" |
||||
} |
||||
|
||||
#include <stdint.h> |
||||
|
||||
// aus cpu-miner.c |
||||
extern int device_map[8]; |
||||
|
||||
// Speicher für Input/Output der verketteten Hashfunktionen |
||||
static uint32_t *d_hash[8]; |
||||
|
||||
// Speicher zur Generierung der Noncevektoren für die bedingten Hashes |
||||
static uint32_t *d_quarkNonces[8]; |
||||
static uint32_t *d_branch1Nonces[8]; |
||||
static uint32_t *d_branch2Nonces[8]; |
||||
static uint32_t *d_branch3Nonces[8]; |
||||
|
||||
extern void quark_blake512_cpu_init(int thr_id, int threads); |
||||
extern void quark_blake512_cpu_setBlock_80(void *pdata); |
||||
extern void quark_blake512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_hash, int order); |
||||
extern void quark_blake512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_bmw512_cpu_init(int thr_id, int threads); |
||||
extern void quark_bmw512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_groestl512_cpu_init(int thr_id, int threads); |
||||
extern void quark_groestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
extern void quark_doublegroestl512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_skein512_cpu_init(int thr_id, int threads); |
||||
extern void quark_skein512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_keccak512_cpu_init(int thr_id, int threads); |
||||
extern void quark_keccak512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_jh512_cpu_init(int thr_id, int threads); |
||||
extern void quark_jh512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order); |
||||
|
||||
extern void quark_check_cpu_init(int thr_id, int threads); |
||||
extern void quark_check_cpu_setTarget(const void *ptarget); |
||||
extern uint32_t quark_check_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_inputHash, int order); |
||||
|
||||
extern void quark_compactTest_cpu_init(int thr_id, int threads); |
||||
extern void quark_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
uint32_t *d_nonces2, size_t *nrm2, |
||||
int order); |
||||
extern void quark_compactTest_single_false_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable, |
||||
uint32_t *d_nonces1, size_t *nrm1, |
||||
int order); |
||||
|
||||
// Original Quarkhash Funktion aus einem miner Quelltext |
||||
inline void quarkhash(void *state, const void *input) |
||||
{ |
||||
sph_blake512_context ctx_blake; |
||||
sph_bmw512_context ctx_bmw; |
||||
sph_groestl512_context ctx_groestl; |
||||
sph_jh512_context ctx_jh; |
||||
sph_keccak512_context ctx_keccak; |
||||
sph_skein512_context ctx_skein; |
||||
|
||||
unsigned char hash[64]; |
||||
|
||||
sph_blake512_init(&ctx_blake); |
||||
// ZBLAKE; |
||||
sph_blake512 (&ctx_blake, input, 80); |
||||
sph_blake512_close(&ctx_blake, (void*) hash); |
||||
|
||||
sph_bmw512_init(&ctx_bmw); |
||||
// ZBMW; |
||||
sph_bmw512 (&ctx_bmw, (const void*) hash, 64); |
||||
sph_bmw512_close(&ctx_bmw, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_groestl512_init(&ctx_groestl); |
||||
// ZGROESTL; |
||||
sph_groestl512 (&ctx_groestl, (const void*) hash, 64); |
||||
sph_groestl512_close(&ctx_groestl, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_skein512_init(&ctx_skein); |
||||
// ZSKEIN; |
||||
sph_skein512 (&ctx_skein, (const void*) hash, 64); |
||||
sph_skein512_close(&ctx_skein, (void*) hash); |
||||
} |
||||
|
||||
sph_groestl512_init(&ctx_groestl); |
||||
// ZGROESTL; |
||||
sph_groestl512 (&ctx_groestl, (const void*) hash, 64); |
||||
sph_groestl512_close(&ctx_groestl, (void*) hash); |
||||
|
||||
sph_jh512_init(&ctx_jh); |
||||
// ZJH; |
||||
sph_jh512 (&ctx_jh, (const void*) hash, 64); |
||||
sph_jh512_close(&ctx_jh, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_blake512_init(&ctx_blake); |
||||
// ZBLAKE; |
||||
sph_blake512 (&ctx_blake, (const void*) hash, 64); |
||||
sph_blake512_close(&ctx_blake, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_bmw512_init(&ctx_bmw); |
||||
// ZBMW; |
||||
sph_bmw512 (&ctx_bmw, (const void*) hash, 64); |
||||
sph_bmw512_close(&ctx_bmw, (void*) hash); |
||||
} |
||||
|
||||
sph_keccak512_init(&ctx_keccak); |
||||
// ZKECCAK; |
||||
sph_keccak512 (&ctx_keccak, (const void*) hash, 64); |
||||
sph_keccak512_close(&ctx_keccak, (void*) hash); |
||||
|
||||
sph_skein512_init(&ctx_skein); |
||||
// SKEIN; |
||||
sph_skein512 (&ctx_skein, (const void*) hash, 64); |
||||
sph_skein512_close(&ctx_skein, (void*) hash); |
||||
|
||||
if (hash[0] & 0x8) |
||||
{ |
||||
sph_keccak512_init(&ctx_keccak); |
||||
// ZKECCAK; |
||||
sph_keccak512 (&ctx_keccak, (const void*) hash, 64); |
||||
sph_keccak512_close(&ctx_keccak, (void*) hash); |
||||
} |
||||
else |
||||
{ |
||||
sph_jh512_init(&ctx_jh); |
||||
// ZJH; |
||||
sph_jh512 (&ctx_jh, (const void*) hash, 64); |
||||
sph_jh512_close(&ctx_jh, (void*) hash); |
||||
} |
||||
|
||||
memcpy(state, hash, 32); |
||||
} |
||||
|
||||
|
||||
extern bool opt_benchmark; |
||||
|
||||
extern "C" int scanhash_quark(int thr_id, uint32_t *pdata, |
||||
const uint32_t *ptarget, uint32_t max_nonce, |
||||
unsigned long *hashes_done) |
||||
{ |
||||
const uint32_t first_nonce = pdata[19]; |
||||
|
||||
// TODO: entfernen für eine Release! Ist nur zum Testen! |
||||
if (opt_benchmark) |
||||
((uint32_t*)ptarget)[7] = 0x0000ff; |
||||
|
||||
const uint32_t Htarg = ptarget[7]; |
||||
|
||||
const int throughput = 256*4096; // 100; |
||||
|
||||
static bool init[8] = {0,0,0,0,0,0,0,0}; |
||||
if (!init[thr_id]) |
||||
{ |
||||
cudaSetDevice(device_map[thr_id]); |
||||
|
||||
// Konstanten kopieren, Speicher belegen |
||||
cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput); |
||||
quark_blake512_cpu_init(thr_id, throughput); |
||||
quark_groestl512_cpu_init(thr_id, throughput); |
||||
quark_skein512_cpu_init(thr_id, throughput); |
||||
quark_bmw512_cpu_init(thr_id, throughput); |
||||
quark_keccak512_cpu_init(thr_id, throughput); |
||||
quark_jh512_cpu_init(thr_id, throughput); |
||||
quark_check_cpu_init(thr_id, throughput); |
||||
quark_compactTest_cpu_init(thr_id, throughput); |
||||
cudaMalloc(&d_quarkNonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch1Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch2Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
cudaMalloc(&d_branch3Nonces[thr_id], sizeof(uint32_t)*throughput); |
||||
init[thr_id] = true; |
||||
} |
||||
|
||||
uint32_t endiandata[20]; |
||||
for (int k=0; k < 20; k++) |
||||
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]); |
||||
|
||||
quark_blake512_cpu_setBlock_80((void*)endiandata); |
||||
quark_check_cpu_setTarget(ptarget); |
||||
|
||||
do { |
||||
int order = 0; |
||||
size_t nrm1=0, nrm2=0, nrm3=0; |
||||
|
||||
// erstes Blake512 Hash mit CUDA |
||||
quark_blake512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für BMW512 |
||||
quark_bmw512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_hash[thr_id], order++); |
||||
|
||||
quark_compactTest_single_false_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id], NULL, |
||||
d_branch3Nonces[thr_id], &nrm3, |
||||
order++); |
||||
|
||||
// nur den Skein Branch weiterverfolgen |
||||
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Groestl512 |
||||
quark_groestl512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für JH512 |
||||
quark_jh512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) |
||||
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], |
||||
d_branch1Nonces[thr_id], &nrm1, |
||||
d_branch2Nonces[thr_id], &nrm2, |
||||
order++); |
||||
|
||||
// das ist der bedingte Branch für Blake512 |
||||
quark_blake512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der bedingte Branch für Bmw512 |
||||
quark_bmw512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Keccak512 |
||||
quark_keccak512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der unbedingte Branch für Skein512 |
||||
quark_skein512_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// quarkNonces in branch1 und branch2 aufsplitten gemäss if (hash[0] & 0x8) |
||||
quark_compactTest_cpu_hash_64(thr_id, nrm3, pdata[19], d_hash[thr_id], d_branch3Nonces[thr_id], |
||||
d_branch1Nonces[thr_id], &nrm1, |
||||
d_branch2Nonces[thr_id], &nrm2, |
||||
order++); |
||||
|
||||
// das ist der bedingte Branch für Keccak512 |
||||
quark_keccak512_cpu_hash_64(thr_id, nrm1, pdata[19], d_branch1Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// das ist der bedingte Branch für JH512 |
||||
quark_jh512_cpu_hash_64(thr_id, nrm2, pdata[19], d_branch2Nonces[thr_id], d_hash[thr_id], order++); |
||||
|
||||
// Scan nach Gewinner Hashes auf der GPU |
||||
uint32_t foundNonce = quark_check_cpu_hash_64(thr_id, nrm3, pdata[19], d_branch3Nonces[thr_id], d_hash[thr_id], order++); |
||||
if (foundNonce != 0xffffffff) |
||||
{ |
||||
uint32_t vhash64[8]; |
||||
be32enc(&endiandata[19], foundNonce); |
||||
quarkhash(vhash64, endiandata); |
||||
|
||||
if ((vhash64[7]<=Htarg) && fulltest(vhash64, ptarget)) { |
||||
|
||||
pdata[19] = foundNonce; |
||||
*hashes_done = (foundNonce - first_nonce + 1)/2; |
||||
return 1; |
||||
} else { |
||||
applog(LOG_INFO, "GPU #%d: result for nonce $%08X does not validate on CPU!", thr_id, foundNonce); |
||||
} |
||||
} |
||||
|
||||
pdata[19] += throughput; |
||||
|
||||
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); |
||||
|
||||
*hashes_done = (pdata[19] - first_nonce + 1)/2; |
||||
return 0; |
||||
} |
Loading…
Reference in new issue