diff --git a/ccminer.vcxproj b/ccminer.vcxproj
index 54fc299..32ebd8d 100644
--- a/ccminer.vcxproj
+++ b/ccminer.vcxproj
@@ -472,6 +472,16 @@ copy "$(CudaToolkitBinDir)\cudart*.dll" "$(OutDir)"
-Xptxas "-abi=no -v" %(AdditionalOptions)
-Xptxas "-abi=no -v" %(AdditionalOptions)
+
+ true
+ true
+ true
+ true
+ -Xptxas "-abi=no -v" %(AdditionalOptions)
+ -Xptxas "-abi=no -v" %(AdditionalOptions)
+ -Xptxas "-abi=no -v" %(AdditionalOptions)
+ -Xptxas "-abi=no -v" %(AdditionalOptions)
+
-Xptxas "-abi=no -v" %(AdditionalOptions)
-Xptxas "-abi=no -v" %(AdditionalOptions)
diff --git a/ccminer.vcxproj.filters b/ccminer.vcxproj.filters
index bc1320d..8b7a596 100644
--- a/ccminer.vcxproj.filters
+++ b/ccminer.vcxproj.filters
@@ -337,5 +337,8 @@
Source Files\CUDA\x11
+
+ Source Files\CUDA\x11
+
\ No newline at end of file
diff --git a/cuda_groestlcoin.cu b/cuda_groestlcoin.cu
index e153e5c..b33ff9e 100644
--- a/cuda_groestlcoin.cu
+++ b/cuda_groestlcoin.cu
@@ -24,7 +24,6 @@ typedef unsigned long long uint64_t;
// diese Struktur wird in der Init Funktion angefordert
static cudaDeviceProp props;
-// globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
extern uint32_t *d_resultNonce[8];
diff --git a/cuda_myriadgroestl.cu b/cuda_myriadgroestl.cu
index fd868ec..062db46 100644
--- a/cuda_myriadgroestl.cu
+++ b/cuda_myriadgroestl.cu
@@ -24,7 +24,6 @@ typedef unsigned int uint32_t;
// diese Struktur wird in der Init Funktion angefordert
static cudaDeviceProp props;
-// globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU
extern uint32_t *d_resultNonce[8];
diff --git a/x11/cuda_x11_simd512.cu b/x11/cuda_x11_simd512.cu
index 940818e..801910f 100644
--- a/x11/cuda_x11_simd512.cu
+++ b/x11/cuda_x11_simd512.cu
@@ -1,9 +1,24 @@
+// Parallelisierung:
+//
+// FFT_8 wird 2 mal 8-fach parallel ausgeführt (in FFT_64)
+// und 1 mal 16-fach parallel (in FFT_128_full)
+//
+// STEP8_IF und STEP8_MAJ beinhalten je zwei 8-fach parallele Operationen
+
+#define TPB 256
+
// aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
+int *d_state[8];
+uint4 *d_temp4[8];
+
+// texture bound to d_temp4[thr_id], for read access in Compaction kernel
+texture texRef1D_128;
+
#define C32(x) ((uint32_t)(x ## U))
#define T32(x) ((x) & C32(0xFFFFFFFF))
@@ -23,99 +38,6 @@ const uint32_t h_IV_512[32] = {
0x09254899, 0xd699c7bc, 0x9019b6dc, 0x2b9022e4, 0x8fa14956, 0x21bf9bd3, 0xb94d0943, 0x6ffddc22
};
-__constant__ int c_FFT[256];
-const int h_FFT[256] =
-{
-// this is the FFT result in revbin permuted order
-4, -4, 32, -32, -60, 60, 60, -60, 101, -101, 58, -58, 112, -112, -11, 11, -92, 92,
--119, 119, 42, -42, -82, 82, 32, -32, 32, -32, 121, -121, 17, -17, -47, 47, 63,
--63, 107, -107, -76, 76, -119, 119, -83, 83, 126, -126, 94, -94, -23, 23, -76,
-76, -47, 47, 92, -92, -117, 117, 73, -73, -53, 53, 88, -88, -80, 80, -47, 47,
-5, -5, 67, -67, 34, -34, 4, -4, 87, -87, -28, 28, -70, 70, -110, 110, -18, 18, 93,
--93, 51, -51, 36, -36, 118, -118, -106, 106, 45, -45, -108, 108, -44, 44, 117,
--117, -121, 121, -37, 37, 65, -65, 37, -37, 40, -40, -42, 42, 91, -91, -128, 128,
--21, 21, 94, -94, -98, 98, -47, 47, 28, -28, 115, -115, 16, -16, -20, 20, 122,
--122, 115, -115, 46, -46, 84, -84, -127, 127, 57, -57, 127, -127, -80, 80, 24,
--24, 15, -15, 29, -29, -78, 78, -126, 126, 16, -16, 52, -52, 55, -55, 110, -110,
--51, 51, -120, 120, -124, 124, -24, 24, -76, 76, 26, -26, -21, 21, -64, 64, -99,
-99, 85, -85, -15, 15, -120, 120, -116, 116, 85, -85, 12, -12, -24, 24, 4, -4,
-79, -79, 76, -76, 23, -23, 4, -4, -108, 108, -20, 20, 73, -73, -42, 42, -7, 7,
--29, 29, -123, 123, 49, -49, -96, 96, -68, 68, -112, 112, 116, -116, -24, 24, 93,
--93, -125, 125, -86, 86, 117, -117, -91, 91, 42, -42, 87, -87, -117, 117, 102, -102
-};
-
-__constant__ int c_P8[32][8];
-static const int h_P8[32][8] = {
-{ 2, 66, 34, 98, 18, 82, 50, 114 },
-{ 6, 70, 38, 102, 22, 86, 54, 118 },
-{ 0, 64, 32, 96, 16, 80, 48, 112 },
-{ 4, 68, 36, 100, 20, 84, 52, 116 },
-{ 14, 78, 46, 110, 30, 94, 62, 126 },
-{ 10, 74, 42, 106, 26, 90, 58, 122 },
-{ 12, 76, 44, 108, 28, 92, 60, 124 },
-{ 8, 72, 40, 104, 24, 88, 56, 120 },
-{ 15, 79, 47, 111, 31, 95, 63, 127 },
-{ 13, 77, 45, 109, 29, 93, 61, 125 },
-{ 3, 67, 35, 99, 19, 83, 51, 115 },
-{ 1, 65, 33, 97, 17, 81, 49, 113 },
-{ 9, 73, 41, 105, 25, 89, 57, 121 },
-{ 11, 75, 43, 107, 27, 91, 59, 123 },
-{ 5, 69, 37, 101, 21, 85, 53, 117 },
-{ 7, 71, 39, 103, 23, 87, 55, 119 },
-{ 8, 72, 40, 104, 24, 88, 56, 120 },
-{ 4, 68, 36, 100, 20, 84, 52, 116 },
-{ 14, 78, 46, 110, 30, 94, 62, 126 },
-{ 2, 66, 34, 98, 18, 82, 50, 114 },
-{ 6, 70, 38, 102, 22, 86, 54, 118 },
-{ 10, 74, 42, 106, 26, 90, 58, 122 },
-{ 0, 64, 32, 96, 16, 80, 48, 112 },
-{ 12, 76, 44, 108, 28, 92, 60, 124 },
-{ 134, 198, 166, 230, 150, 214, 182, 246 },
-{ 128, 192, 160, 224, 144, 208, 176, 240 },
-{ 136, 200, 168, 232, 152, 216, 184, 248 },
-{ 142, 206, 174, 238, 158, 222, 190, 254 },
-{ 140, 204, 172, 236, 156, 220, 188, 252 },
-{ 138, 202, 170, 234, 154, 218, 186, 250 },
-{ 130, 194, 162, 226, 146, 210, 178, 242 },
-{ 132, 196, 164, 228, 148, 212, 180, 244 },
-};
-
-__constant__ int c_Q8[32][8];
-static const int h_Q8[32][8] = {
-{ 130, 194, 162, 226, 146, 210, 178, 242 },
-{ 134, 198, 166, 230, 150, 214, 182, 246 },
-{ 128, 192, 160, 224, 144, 208, 176, 240 },
-{ 132, 196, 164, 228, 148, 212, 180, 244 },
-{ 142, 206, 174, 238, 158, 222, 190, 254 },
-{ 138, 202, 170, 234, 154, 218, 186, 250 },
-{ 140, 204, 172, 236, 156, 220, 188, 252 },
-{ 136, 200, 168, 232, 152, 216, 184, 248 },
-{ 143, 207, 175, 239, 159, 223, 191, 255 },
-{ 141, 205, 173, 237, 157, 221, 189, 253 },
-{ 131, 195, 163, 227, 147, 211, 179, 243 },
-{ 129, 193, 161, 225, 145, 209, 177, 241 },
-{ 137, 201, 169, 233, 153, 217, 185, 249 },
-{ 139, 203, 171, 235, 155, 219, 187, 251 },
-{ 133, 197, 165, 229, 149, 213, 181, 245 },
-{ 135, 199, 167, 231, 151, 215, 183, 247 },
-{ 9, 73, 41, 105, 25, 89, 57, 121 },
-{ 5, 69, 37, 101, 21, 85, 53, 117 },
-{ 15, 79, 47, 111, 31, 95, 63, 127 },
-{ 3, 67, 35, 99, 19, 83, 51, 115 },
-{ 7, 71, 39, 103, 23, 87, 55, 119 },
-{ 11, 75, 43, 107, 27, 91, 59, 123 },
-{ 1, 65, 33, 97, 17, 81, 49, 113 },
-{ 13, 77, 45, 109, 29, 93, 61, 125 },
-{ 135, 199, 167, 231, 151, 215, 183, 247 },
-{ 129, 193, 161, 225, 145, 209, 177, 241 },
-{ 137, 201, 169, 233, 153, 217, 185, 249 },
-{ 143, 207, 175, 239, 159, 223, 191, 255 },
-{ 141, 205, 173, 237, 157, 221, 189, 253 },
-{ 139, 203, 171, 235, 155, 219, 187, 251 },
-{ 131, 195, 163, 227, 147, 211, 179, 243 },
-{ 133, 197, 165, 229, 149, 213, 181, 245 },
-};
-
__constant__ int c_FFT128_8_16_Twiddle[128];
static const int h_FFT128_8_16_Twiddle[128] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
@@ -160,67 +82,7 @@ static const int h_FFT256_2_128_Twiddle[128] = {
#define IF(x, y, z) ((((y) ^ (z)) & (x)) ^ (z))
#define MAJ(x, y, z) (((z) & (y)) | (((z) | (y)) & (x)))
-
-__device__ __forceinline__ void STEP8_IF(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
-{
- int j;
- uint32_t R[8];
-#pragma unroll 8
- for(j=0; j<8; j++) {
- R[j] = ROTL32(A[j], r);
- }
-#pragma unroll 8
- for(j=0; j<8; j++) {
- D[j] = D[j] + w[j] + IF(A[j], B[j], C[j]);
- D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
- A[j] = R[j];
- }
-}
-
-__device__ __forceinline__ void STEP8_MAJ(const uint32_t *w, const int i, const int r, const int s, uint32_t *A, const uint32_t *B, const uint32_t *C, uint32_t *D)
-{
- int j;
- uint32_t R[8];
-#pragma unroll 8
- for(j=0; j<8; j++) {
- R[j] = ROTL32(A[j], r);
- }
-#pragma unroll 8
- for(j=0; j<8; j++) {
- D[j] = D[j] + w[j] + MAJ(A[j], B[j], C[j]);
- D[j] = T32(ROTL32(T32(D[j]), s) + R[j^p8_xor(i)]);
- A[j] = R[j];
- }
-}
-
-__device__ __forceinline__ void Round8(uint32_t A[32], const int y[256], int i,
- int r, int s, int t, int u) {
- int code = i<2? 185: 233;
- uint32_t w[8][8];
- int a, b;
-
- /*
- * The FFT output y is in revbin permuted order,
- * but this is included in the tables P and Q
- */
-
-#pragma unroll 8
- for(a=0; a<8; a++)
-#pragma unroll 8
- for(b=0; b<8; b++)
- w[a][b] = __byte_perm( (y[c_P8[8*i+a][b]] * code), (y[c_Q8[8*i+a][b]] * code), 0x5410);
-
- STEP8_IF(w[0], 8*i+0, r, s, A, &A[8], &A[16], &A[24]);
- STEP8_IF(w[1], 8*i+1, s, t, &A[24], A, &A[8], &A[16]);
- STEP8_IF(w[2], 8*i+2, t, u, &A[16], &A[24], A, &A[8]);
- STEP8_IF(w[3], 8*i+3, u, r, &A[8], &A[16], &A[24], A);
-
- STEP8_MAJ(w[4], 8*i+4, r, s, A, &A[8], &A[16], &A[24]);
- STEP8_MAJ(w[5], 8*i+5, s, t, &A[24], A, &A[8], &A[16]);
- STEP8_MAJ(w[6], 8*i+6, t, u, &A[16], &A[24], A, &A[8]);
- STEP8_MAJ(w[7], 8*i+7, u, r, &A[8], &A[16], &A[24], A);
-}
-
+#include "x11/simd_functions.cu"
/********************* Message expansion ************************/
@@ -305,7 +167,7 @@ X(j) = (u-v) << (2*n); \
#undef BUTTERFLY
}
-__device__ __forceinline__ void FFT_16(int *y, int stripe) {
+__device__ __forceinline__ void FFT_16(int *y) {
/*
* FFT_16 using w=2 as 16th root of unity
@@ -313,115 +175,124 @@ __device__ __forceinline__ void FFT_16(int *y, int stripe) {
* Output data is in revbin_permuted order.
*/
-#define X(i) y[stripe*i]
-
-#define DO_REDUCE(i) \
-X(i) = REDUCE(X(i))
-
#define DO_REDUCE_FULL_S(i) \
do { \
-X(i) = REDUCE(X(i)); \
-X(i) = EXTRA_REDUCE_S(X(i)); \
+y[i] = REDUCE(y[i]); \
+y[i] = EXTRA_REDUCE_S(y[i]); \
} while(0)
-#define BUTTERFLY(i,j,n) \
-do { \
-int u= X(i); \
-int v= X(j); \
-X(i) = u+v; \
-X(j) = (u-v) << n; \
-} while(0)
+ int u,v;
- BUTTERFLY(0, 8, 0);
- BUTTERFLY(1, 9, 1);
- BUTTERFLY(2, 10, 2);
- BUTTERFLY(3, 11, 3);
- BUTTERFLY(4, 12, 4);
- BUTTERFLY(5, 13, 5);
- BUTTERFLY(6, 14, 6);
- BUTTERFLY(7, 15, 7);
-
- DO_REDUCE(11);
- DO_REDUCE(12);
- DO_REDUCE(13);
- DO_REDUCE(14);
- DO_REDUCE(15);
-
- BUTTERFLY( 0, 4, 0);
- BUTTERFLY( 1, 5, 2);
- BUTTERFLY( 2, 6, 4);
- BUTTERFLY( 3, 7, 6);
-
- BUTTERFLY( 8, 12, 0);
- BUTTERFLY( 9, 13, 2);
- BUTTERFLY(10, 14, 4);
- BUTTERFLY(11, 15, 6);
-
- DO_REDUCE(5);
- DO_REDUCE(7);
- DO_REDUCE(13);
- DO_REDUCE(15);
-
- BUTTERFLY( 0, 2, 0);
- BUTTERFLY( 1, 3, 4);
- BUTTERFLY( 4, 6, 0);
- BUTTERFLY( 5, 7, 4);
-
- BUTTERFLY( 8, 10, 0);
- BUTTERFLY(12, 14, 0);
- BUTTERFLY( 9, 11, 4);
- BUTTERFLY(13, 15, 4);
-
-
- BUTTERFLY( 0, 1, 0);
- BUTTERFLY( 2, 3, 0);
- BUTTERFLY( 4, 5, 0);
- BUTTERFLY( 6, 7, 0);
-
- BUTTERFLY( 8, 9, 0);
- BUTTERFLY(10, 11, 0);
- BUTTERFLY(12, 13, 0);
- BUTTERFLY(14, 15, 0);
-
- DO_REDUCE_FULL_S( 0);
- DO_REDUCE_FULL_S( 1);
- DO_REDUCE_FULL_S( 2);
- DO_REDUCE_FULL_S( 3);
- DO_REDUCE_FULL_S( 4);
- DO_REDUCE_FULL_S( 5);
- DO_REDUCE_FULL_S( 6);
- DO_REDUCE_FULL_S( 7);
- DO_REDUCE_FULL_S( 8);
- DO_REDUCE_FULL_S( 9);
- DO_REDUCE_FULL_S(10);
- DO_REDUCE_FULL_S(11);
- DO_REDUCE_FULL_S(12);
- DO_REDUCE_FULL_S(13);
- DO_REDUCE_FULL_S(14);
- DO_REDUCE_FULL_S(15);
+ // BUTTERFLY(0, 8, 0);
+ // BUTTERFLY(1, 9, 1);
+ // BUTTERFLY(2, 10, 2);
+ // BUTTERFLY(3, 11, 3);
+ // BUTTERFLY(4, 12, 4);
+ // BUTTERFLY(5, 13, 5);
+ // BUTTERFLY(6, 14, 6);
+ // BUTTERFLY(7, 15, 7);
+ {
+ u= y[0]; // 0..7
+ v= y[1]; // 8..15
+ y[0] = u+v;
+ y[1] = (u-v) << (threadIdx.x&7);
+ }
+
+ // DO_REDUCE(11);
+ // DO_REDUCE(12);
+ // DO_REDUCE(13);
+ // DO_REDUCE(14);
+ // DO_REDUCE(15);
+ if ((threadIdx.x&7) >=3) y[1] = REDUCE(y[1]); // 11...15
+
+ // BUTTERFLY( 0, 4, 0);
+ // BUTTERFLY( 1, 5, 2);
+ // BUTTERFLY( 2, 6, 4);
+ // BUTTERFLY( 3, 7, 6);
+ {
+ u= __shfl((int)y[0], (threadIdx.x&3),8); // 0,1,2,3 0,1,2,3
+ v= __shfl((int)y[0],4+(threadIdx.x&3),8); // 4,5,6,7 4,5,6,7
+ y[0] = ((threadIdx.x&7) < 4) ? (u+v) : ((u-v) << (2*(threadIdx.x&3)));
+ }
+
+ // BUTTERFLY( 8, 12, 0);
+ // BUTTERFLY( 9, 13, 2);
+ // BUTTERFLY(10, 14, 4);
+ // BUTTERFLY(11, 15, 6);
+ {
+ u= __shfl((int)y[1], (threadIdx.x&3),8); // 8,9,10,11 8,9,10,11
+ v= __shfl((int)y[1],4+(threadIdx.x&3),8); // 12,13,14,15 12,13,14,15
+ y[1] = ((threadIdx.x&7) < 4) ? (u+v) : ((u-v) << (2*(threadIdx.x&3)));
+ }
+
+ // DO_REDUCE(5);
+ // DO_REDUCE(7);
+ // DO_REDUCE(13);
+ // DO_REDUCE(15);
+ if ((threadIdx.x&1) && (threadIdx.x&7) >= 4) {
+ y[0] = REDUCE(y[0]); // 5, 7
+ y[1] = REDUCE(y[1]); // 13, 15
+ }
+
+ // BUTTERFLY( 0, 2, 0);
+ // BUTTERFLY( 1, 3, 4);
+ // BUTTERFLY( 4, 6, 0);
+ // BUTTERFLY( 5, 7, 4);
+ {
+ u= __shfl((int)y[0], (threadIdx.x&5),8); // 0,1,0,1 4,5,4,5
+ v= __shfl((int)y[0],2+(threadIdx.x&5),8); // 2,3,2,3 6,7,6,7
+ y[0] = ((threadIdx.x&3) < 2) ? (u+v) : ((u-v) << (4*(threadIdx.x&1)));
+ }
+
+ // BUTTERFLY( 8, 10, 0);
+ // BUTTERFLY( 9, 11, 4);
+ // BUTTERFLY(12, 14, 0);
+ // BUTTERFLY(13, 15, 4);
+ {
+ u= __shfl((int)y[1], (threadIdx.x&5),8); // 8,9,8,9 12,13,12,13
+ v= __shfl((int)y[1],2+(threadIdx.x&5),8); // 10,11,10,11 14,15,14,15
+ y[1] = ((threadIdx.x&3) < 2) ? (u+v) : ((u-v) << (4*(threadIdx.x&1)));
+ }
+
+ // BUTTERFLY( 0, 1, 0);
+ // BUTTERFLY( 2, 3, 0);
+ // BUTTERFLY( 4, 5, 0);
+ // BUTTERFLY( 6, 7, 0);
+ {
+ u= __shfl((int)y[0], (threadIdx.x&6),8); // 0,0,2,2 4,4,6,6
+ v= __shfl((int)y[0],1+(threadIdx.x&6),8); // 1,1,3,3 5,5,7,7
+ y[0] = ((threadIdx.x&1) < 1) ? (u+v) : (u-v);
+ }
+
+ // BUTTERFLY( 8, 9, 0);
+ // BUTTERFLY(10, 11, 0);
+ // BUTTERFLY(12, 13, 0);
+ // BUTTERFLY(14, 15, 0);
+ {
+ u= __shfl((int)y[1], (threadIdx.x&6),8); // 8,8,10,10 12,12,14,14
+ v= __shfl((int)y[1],1+(threadIdx.x&6),8); // 9,9,11,11 13,13,15,15
+ y[1] = ((threadIdx.x&1) < 1) ? (u+v) : (u-v);
+ }
+
+ DO_REDUCE_FULL_S( 0); // 0...7
+ DO_REDUCE_FULL_S( 1); // 8...15
-#undef X
-#undef DO_REDUCE
#undef DO_REDUCE_FULL_S
-#undef BUTTERFLY
}
-__device__ __forceinline__ void FFT_128_full(int *y) {
+__device__ __forceinline__ void FFT_128_full(int y[128]) {
int i;
-#pragma unroll 16
- for (i=0; i<16; i++) {
- FFT_8(y+i,16);
- }
+ FFT_8(y+0,2); // eight parallel FFT8's
+ FFT_8(y+1,2); // eight parallel FFT8's
-#pragma unroll 128
- for (i=0; i<128; i++)
- /*if (i & 7)*/ y[i] = REDUCE(y[i]*c_FFT128_8_16_Twiddle[i]);
+#pragma unroll 16
+ for (i=0; i<16; i++)
+ /*if (i & 7)*/ y[i] = REDUCE(y[i]*c_FFT128_8_16_Twiddle[i*8+(threadIdx.x&7)]);
#pragma unroll 8
- for (i=0; i<8; i++) {
- FFT_16(y+16*i,1);
- }
+ for (i=0; i<8; i++)
+ FFT_16(y+2*i); // eight sequential FFT16's, each one executed in parallel by 8 threads
}
@@ -435,116 +306,323 @@ __device__ __forceinline__ void FFT_256_halfzero(int y[256]) {
* Output data is in revbin_permuted order.
* In place.
*/
- const int tmp = y[127];
+ const int tmp = y[15];
-#pragma unroll 127
- for (i=0; i<127; i++)
- y[128+i] = REDUCE(y[i] * c_FFT256_2_128_Twiddle[i]);
+#pragma unroll 8
+ for (i=0; i<8; i++)
+ y[16+i] = REDUCE(y[i] * c_FFT256_2_128_Twiddle[8*i+(threadIdx.x&7)]);
+#pragma unroll 8
+ for (i=8; i<16; i++)
+ y[16+i] = 0;
- /* handle X^255 with an additionnal butterfly */
- y[127] = REDUCE(tmp + 1);
- y[255] = REDUCE((tmp - 1) * c_FFT256_2_128_Twiddle[127]);
+ /* handle X^255 with an additional butterfly */
+ if ((threadIdx.x&7) == 7)
+ {
+ y[15] = REDUCE(tmp + 1);
+ y[31] = REDUCE((tmp - 1) * c_FFT256_2_128_Twiddle[127]);
+ }
FFT_128_full(y);
- FFT_128_full(y+128);
+ FFT_128_full(y+16);
}
-__device__ __forceinline__ void SIMD_Compress(uint32_t A[32], const int *expanded, const uint32_t *M) {
-
- uint32_t IV[4][8];
- int i;
-
- /* Save the chaining value for the feed-forward */
-
-#pragma unroll 8
- for(i=0; i<8; i++) {
- IV[0][i] = A[i];
- IV[1][i] = (&A[8])[i];
- IV[2][i] = (&A[16])[i];
- IV[3][i] = (&A[24])[i];
- }
+/***************************************************/
- /* XOR the message to the chaining value */
- /* we can XOR word-by-word */
-
- {
-#pragma unroll 8
- for(i=0; i<8; i++) {
- A[i] ^= M[i];
- (&A[8])[i] ^= M[8+i];
- }
- }
+__device__ __forceinline__ void Expansion(const uint32_t *data, uint4 *g_temp4)
+{
+ int i;
- /* Run the feistel ladders with the expanded message */
- {
- Round8(A, expanded, 0, 3, 23, 17, 27);
- Round8(A, expanded, 1, 28, 19, 22, 7);
- Round8(A, expanded, 2, 29, 9, 15, 5);
- Round8(A, expanded, 3, 4, 13, 10, 25);
-
- STEP8_IF(IV[0], 32, 4, 13, A, &A[8], &A[16], &A[24]);
- STEP8_IF(IV[1], 33, 13, 10, &A[24], A, &A[8], &A[16]);
- STEP8_IF(IV[2], 34, 10, 25, &A[16], &A[24], A, &A[8]);
- STEP8_IF(IV[3], 35, 25, 4, &A[8], &A[16], &A[24], A);
+ /* Message Expansion using Number Theoretical Transform similar to FFT */
+ int expanded[32];
+#pragma unroll 4
+ for (i=0; i < 4; i++) {
+ expanded[ i] = __byte_perm(__shfl((int)data[0], 2*i, 8), __shfl((int)data[0], (2*i)+1, 8), threadIdx.x&7)&0xff;
+ expanded[4+i] = __byte_perm(__shfl((int)data[1], 2*i, 8), __shfl((int)data[1], (2*i)+1, 8), threadIdx.x&7)&0xff;
}
+#pragma unroll 8
+ for (i=8; i < 16; i++)
+ expanded[i] = 0;
+
+ FFT_256_halfzero(expanded);
+
+ // store w matrices in global memory
+
+#define mul_185(x) ( (x)*185 )
+#define mul_233(x) ( (x)*233 )
+
+ uint4 vec0;
+ int P, Q, P1, Q1, P2, Q2;
+ bool even = (threadIdx.x & 1) == 0;
+
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
+
+ // 2 6 0 4
+ const int perm0[8] = { 2,3,6,7,0,1,4,5 }; // TODO: das landet im lmem. doof.
+
+ P1 = expanded[ 0]; P2 = __shfl(expanded[ 2], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[16]; Q2 = __shfl(expanded[18], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm0[threadIdx.x&7], 8);
+ P1 = expanded[ 8]; P2 = __shfl(expanded[10], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[24]; Q2 = __shfl(expanded[26], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm0[threadIdx.x&7], 8);
+ P1 = expanded[ 4]; P2 = __shfl(expanded[ 6], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[20]; Q2 = __shfl(expanded[22], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm0[threadIdx.x&7], 8);
+ P1 = expanded[12]; P2 = __shfl(expanded[14], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[28]; Q2 = __shfl(expanded[30], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm0[threadIdx.x&7], 8);
+ g_temp4[threadIdx.x&7] = vec0;
+
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+
+ // 6 2 4 0
+ const int perm1[8] = { 6,7,2,3,4,5,0,1 }; // TODO: das landet im lmem. doof.
+
+ P1 = expanded[ 1]; P2 = __shfl(expanded[ 3], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[17]; Q2 = __shfl(expanded[19], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm1[threadIdx.x&7], 8);
+ P1 = expanded[ 9]; P2 = __shfl(expanded[11], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[25]; Q2 = __shfl(expanded[27], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm1[threadIdx.x&7], 8);
+ P1 = expanded[ 5]; P2 = __shfl(expanded[ 7], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[21]; Q2 = __shfl(expanded[23], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm1[threadIdx.x&7], 8);
+ P1 = expanded[13]; P2 = __shfl(expanded[15], (threadIdx.x-1)&7, 8); P = even ? P1 : P2;
+ Q1 = expanded[29]; Q2 = __shfl(expanded[31], (threadIdx.x-1)&7, 8); Q = even ? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm1[threadIdx.x&7], 8);
+ g_temp4[8+(threadIdx.x&7)] = vec0;
+
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+
+ // 7 5 3 1
+ const int perm2[8] = { 7,6,5,4,3,2,1,0 }; // TODO: das landet im lmem. doof.
+
+ bool hi = (threadIdx.x&7)>=4;
+
+ P1 = hi?expanded[ 1]:expanded[ 0]; P2 = __shfl(hi?expanded[ 3]:expanded[ 2], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = hi?expanded[17]:expanded[16]; Q2 = __shfl(hi?expanded[19]:expanded[18], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm2[threadIdx.x&7], 8);
+ P1 = hi?expanded[ 9]:expanded[ 8]; P2 = __shfl(hi?expanded[11]:expanded[10], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = hi?expanded[25]:expanded[24]; Q2 = __shfl(hi?expanded[27]:expanded[26], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm2[threadIdx.x&7], 8);
+ P1 = hi?expanded[ 5]:expanded[ 4]; P2 = __shfl(hi?expanded[ 7]:expanded[ 6], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = hi?expanded[21]:expanded[20]; Q2 = __shfl(hi?expanded[23]:expanded[22], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm2[threadIdx.x&7], 8);
+ P1 = hi?expanded[13]:expanded[12]; P2 = __shfl(hi?expanded[15]:expanded[14], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = hi?expanded[29]:expanded[28]; Q2 = __shfl(hi?expanded[31]:expanded[30], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm2[threadIdx.x&7], 8);
+ g_temp4[16+(threadIdx.x&7)] = vec0;
+
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
+// 1 9 5 13 3 11 7 15 17 25 21 29 19 27 23 31 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
+// 0 8 4 12 2 10 6 14 16 24 20 28 18 26 22 30 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
+
+ // 1 3 5 7
+ const int perm3[8] = { 1,0,3,2,5,4,7,6 }; // TODO: das landet im lmem. doof.
+
+ bool lo = (threadIdx.x&7)<4;
+
+ P1 = lo?expanded[ 1]:expanded[ 0]; P2 = __shfl(lo?expanded[ 3]:expanded[ 2], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = lo?expanded[17]:expanded[16]; Q2 = __shfl(lo?expanded[19]:expanded[18], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm3[threadIdx.x&7], 8);
+ P1 = lo?expanded[ 9]:expanded[ 8]; P2 = __shfl(lo?expanded[11]:expanded[10], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = lo?expanded[25]:expanded[24]; Q2 = __shfl(lo?expanded[27]:expanded[26], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm3[threadIdx.x&7], 8);
+ P1 = lo?expanded[ 5]:expanded[ 4]; P2 = __shfl(lo?expanded[ 7]:expanded[ 6], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = lo?expanded[21]:expanded[20]; Q2 = __shfl(lo?expanded[23]:expanded[22], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm3[threadIdx.x&7], 8);
+ P1 = lo?expanded[13]:expanded[12]; P2 = __shfl(lo?expanded[15]:expanded[14], (threadIdx.x+1)&7, 8); P = !even ? P1 : P2;
+ Q1 = lo?expanded[29]:expanded[28]; Q2 = __shfl(lo?expanded[31]:expanded[30], (threadIdx.x+1)&7, 8); Q = !even ? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_185(P), mul_185(Q) , 0x5410), perm3[threadIdx.x&7], 8);
+ g_temp4[24+(threadIdx.x&7)] = vec0;
+
+// 1 9 5 13 3 11 7 15 1 9 5 13 3 11 7 15 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
+// 0 8 4 12 2 10 6 14 0 8 4 12 2 10 6 14 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
+// 1 9 5 13 3 11 7 15 1 9 5 13 3 11 7 15 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
+// 0 8 4 12 2 10 6 14 0 8 4 12 2 10 6 14 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
+
+//{ 8, 72, 40, 104, 24, 88, 56, 120 }, { 9, 73, 41, 105, 25, 89, 57, 121 },
+//{ 4, 68, 36, 100, 20, 84, 52, 116 }, { 5, 69, 37, 101, 21, 85, 53, 117 },
+//{ 14, 78, 46, 110, 30, 94, 62, 126 }, { 15, 79, 47, 111, 31, 95, 63, 127 },
+//{ 2, 66, 34, 98, 18, 82, 50, 114 }, { 3, 67, 35, 99, 19, 83, 51, 115 },
+
+ const int perm4[8] = { 0,1,4,5,6,7,2,3 }; // TODO: das landet im lmem. doof.
+
+ bool sel = ((threadIdx.x+2)&7) >= 4; // 2,3,4,5
+
+ P1 = sel?expanded[0]:expanded[1]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[2]:expanded[3]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm4[threadIdx.x&7], 8);
+ P1 = sel?expanded[8]:expanded[9]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[10]:expanded[11]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm4[threadIdx.x&7], 8);
+ P1 = sel?expanded[4]:expanded[5]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[6]:expanded[7]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm4[threadIdx.x&7], 8);
+ P1 = sel?expanded[12]:expanded[13]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[14]:expanded[15]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm4[threadIdx.x&7], 8);
+
+ g_temp4[32+(threadIdx.x&7)] = vec0;
+
+// 0 8 4 12 2 10 6 14 0 8 4 12 2 10 6 14 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
+// 1 9 5 13 3 11 7 15 1 9 5 13 3 11 7 15 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
+// 0 8 4 12 2 10 6 14 0 8 4 12 2 10 6 14 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
+// 1 9 5 13 3 11 7 15 1 9 5 13 3 11 7 15 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
+
+ const int perm5[8] = { 6,7,2,3,0,1,4,5 }; // TODO: das landet im lmem. doof.
+
+ P1 = sel?expanded[1]:expanded[0]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[3]:expanded[2]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm5[threadIdx.x&7], 8);
+ P1 = sel?expanded[9]:expanded[8]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[11]:expanded[10]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm5[threadIdx.x&7], 8);
+ P1 = sel?expanded[5]:expanded[4]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[7]:expanded[6]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm5[threadIdx.x&7], 8);
+ P1 = sel?expanded[13]:expanded[12]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ Q2 = sel?expanded[15]:expanded[14]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm5[threadIdx.x&7], 8);
+
+ g_temp4[40+(threadIdx.x&7)] = vec0;
+
+// 16 24 20 28 18 26 22 30 16 24 20 28 18 26 22 30 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
+// 16 24 20 28 18 26 22 30 16 24 20 28 18 26 22 30 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
+// 17 25 21 29 19 27 23 31 17 25 21 29 19 27 23 31 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
+// 17 25 21 29 19 27 23 31 17 25 21 29 19 27 23 31 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7
+
+ const int perm6[8] = { 6,7,0,1,4,5,2,3 }; // TODO: das landet im lmem. doof.
+ // sel markiert threads 2,3,4,5
+
+ int t;
+ t = __shfl(expanded[17],(threadIdx.x+4)&7,8); P1 = sel?t:expanded[16]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[19],(threadIdx.x+4)&7,8); Q2 = sel?t:expanded[18]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm6[threadIdx.x&7], 8);
+ t = __shfl(expanded[25],(threadIdx.x+4)&7,8); P1 = sel?t:expanded[24]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[27],(threadIdx.x+4)&7,8); Q2 = sel?t:expanded[26]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm6[threadIdx.x&7], 8);
+ t = __shfl(expanded[21],(threadIdx.x+4)&7,8); P1 = sel?t:expanded[20]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[23],(threadIdx.x+4)&7,8); Q2 = sel?t:expanded[22]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm6[threadIdx.x&7], 8);
+ t = __shfl(expanded[29],(threadIdx.x+4)&7,8); P1 = sel?t:expanded[28]; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[31],(threadIdx.x+4)&7,8); Q2 = sel?t:expanded[30]; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm6[threadIdx.x&7], 8);
+
+ g_temp4[48+(threadIdx.x&7)] = vec0;
+
+// 17 25 21 29 19 27 23 31 17 25 21 29 19 27 23 31 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
+// 17 25 21 29 19 27 23 31 17 25 21 29 19 27 23 31 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
+// 16 24 20 28 18 26 22 30 16 24 20 28 18 26 22 30 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3
+// 16 24 20 28 18 26 22 30 16 24 20 28 18 26 22 30 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5
+
+ const int perm7[8] = { 4,5,2,3,6,7,0,1 }; // TODO: das landet im lmem. doof.
+ // sel markiert threads 2,3,4,5
+
+ t = __shfl(expanded[16],(threadIdx.x+4)&7,8); P1 = sel?expanded[17]:t; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[18],(threadIdx.x+4)&7,8); Q2 = sel?expanded[19]:t; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.x = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm7[threadIdx.x&7], 8);
+ t = __shfl(expanded[24],(threadIdx.x+4)&7,8); P1 = sel?expanded[25]:t; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[26],(threadIdx.x+4)&7,8); Q2 = sel?expanded[27]:t; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.y = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm7[threadIdx.x&7], 8);
+ t = __shfl(expanded[20],(threadIdx.x+4)&7,8); P1 = sel?expanded[21]:t; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[22],(threadIdx.x+4)&7,8); Q2 = sel?expanded[23]:t; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.z = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm7[threadIdx.x&7], 8);
+ t = __shfl(expanded[28],(threadIdx.x+4)&7,8); P1 = sel?expanded[29]:t; Q1 = __shfl(P1, threadIdx.x^1, 8);
+ t = __shfl(expanded[30],(threadIdx.x+4)&7,8); Q2 = sel?expanded[31]:t; P2 = __shfl(Q2, threadIdx.x^1, 8);
+ P = even? P1 : P2; Q = even? Q1 : Q2;
+ vec0.w = __shfl((int)__byte_perm(mul_233(P), mul_233(Q) , 0x5410), perm7[threadIdx.x&7], 8);
+
+ g_temp4[56+(threadIdx.x&7)] = vec0;
+
+#undef mul_185
+#undef mul_233
}
-
/***************************************************/
+// Die Hash-Funktion
+__global__ void __launch_bounds__(TPB,4)
+x11_simd512_gpu_expand_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint4 *g_temp4)
+{
+ int thread = (blockDim.x * blockIdx.x + threadIdx.x)/8;
+ if (thread < threads)
+ {
+ uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
-__device__ __forceinline__ void SIMDHash(const uint32_t *data, uint32_t *hashval) {
-
- uint32_t A[32];
- int i;
+ int hashPosition = nounce - startNounce;
- uint32_t buffer[16];
+ uint32_t *inpHash = (uint32_t*)&g_hash[8 * hashPosition];
-#pragma unroll 32
- for (i=0; i < 32; i++) A[i] = c_IV_512[i];
+ // Hash einlesen und auf 8 Threads und 2 Register verteilen
+ uint32_t Hash[2];
+#pragma unroll 2
+ for (int i=0; i<2; i++)
+ Hash[i] = inpHash[8*i+(threadIdx.x&7)];
-#pragma unroll 16
- for (i=0; i < 16; i++) buffer[i] = data[i];
+ // Puffer für expandierte Nachricht
+ uint4 *temp4 = &g_temp4[64 * hashPosition];
- /* Message Expansion using Number Theoretical Transform similar to FFT */
- int expanded[256];
- {
-#pragma unroll 16
- for(i=0; i<64; i+=4) {
- expanded[i+0] = __byte_perm(buffer[i/4],0,0x4440);
- expanded[i+1] = __byte_perm(buffer[i/4],0,0x4441);
- expanded[i+2] = __byte_perm(buffer[i/4],0,0x4442);
- expanded[i+3] = __byte_perm(buffer[i/4],0,0x4443);
- }
-#pragma unroll 16
- for(i=64; i<128; i+=4) {
- expanded[i+0] = 0;
- expanded[i+1] = 0;
- expanded[i+2] = 0;
- expanded[i+3] = 0;
+ Expansion(Hash, temp4);
}
+}
- FFT_256_halfzero(expanded);
- }
+__global__ void __launch_bounds__(TPB,4)
+x11_simd512_gpu_compress1_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint4 *g_fft4, int *g_state)
+{
+ int thread = (blockDim.x * blockIdx.x + threadIdx.x);
+ if (thread < threads)
+ {
+ uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
- /* Compression Function */
- SIMD_Compress(A, expanded, buffer);
+ int hashPosition = nounce - startNounce;
+ uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition];
+
+ Compression1(Hash, hashPosition, g_fft4, g_state);
+ }
+}
- /* Padding Round with known input (hence the FFT can be precomputed) */
- buffer[0] = 512;
-#pragma unroll 15
- for (i=1; i < 16; i++) buffer[i] = 0;
+__global__ void __launch_bounds__(TPB,4)
+x11_simd512_gpu_compress2_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint4 *g_fft4, int *g_state)
+{
+ int thread = (blockDim.x * blockIdx.x + threadIdx.x);
+ if (thread < threads)
+ {
+ uint32_t nounce = (g_nonceVector != NULL) ? g_nonceVector[thread] : (startNounce + thread);
- SIMD_Compress(A, c_FFT, buffer);
+ int hashPosition = nounce - startNounce;
-#pragma unroll 16
- for (i=0; i < 16; i++)
- hashval[i] = A[i];
+ Compression2(hashPosition, g_fft4, g_state);
+ }
}
-/***************************************************/
-// Die Hash-Funktion
-__global__ void x11_simd512_gpu_hash_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector)
+__global__ void __launch_bounds__(TPB,4)
+x11_simd512_gpu_final_64(int threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *g_nonceVector, uint4 *g_fft4, int *g_state)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
@@ -554,36 +632,60 @@ __global__ void x11_simd512_gpu_hash_64(int threads, uint32_t startNounce, uint6
int hashPosition = nounce - startNounce;
uint32_t *Hash = (uint32_t*)&g_hash[8 * hashPosition];
- SIMDHash(Hash, Hash);
+ Final(Hash, hashPosition, g_fft4, g_state);
}
}
-
// Setup-Funktionen
__host__ void x11_simd512_cpu_init(int thr_id, int threads)
{
+ cudaMalloc( &d_state[thr_id], 32*sizeof(int)*threads );
+ cudaMalloc( &d_temp4[thr_id], 64*sizeof(uint4)*threads );
+
+#if 1
+ // Textur für 128 Bit Zugriffe
+ cudaChannelFormatDesc channelDesc128 = cudaCreateChannelDesc();
+ texRef1D_128.normalized = 0;
+ texRef1D_128.filterMode = cudaFilterModePoint;
+ texRef1D_128.addressMode[0] = cudaAddressModeClamp;
+ cudaBindTexture(NULL, &texRef1D_128, d_temp4[thr_id], &channelDesc128, 64*sizeof(uint4)*threads);
+#endif
+
cudaMemcpyToSymbol( c_IV_512, h_IV_512, sizeof(h_IV_512), 0, cudaMemcpyHostToDevice);
- cudaMemcpyToSymbol( c_FFT, h_FFT, sizeof(h_FFT), 0, cudaMemcpyHostToDevice);
- cudaMemcpyToSymbol( c_P8, h_P8, sizeof(h_P8), 0, cudaMemcpyHostToDevice);
- cudaMemcpyToSymbol( c_Q8, h_Q8, sizeof(h_Q8), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT128_8_16_Twiddle, h_FFT128_8_16_Twiddle, sizeof(h_FFT128_8_16_Twiddle), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol( c_FFT256_2_128_Twiddle, h_FFT256_2_128_Twiddle, sizeof(h_FFT256_2_128_Twiddle), 0, cudaMemcpyHostToDevice);
+
+
+ // CH
+ cudaMemcpyToSymbol( d_cw0, h_cw0, sizeof(h_cw0), 0, cudaMemcpyHostToDevice);
+ cudaMemcpyToSymbol( d_cw1, h_cw1, sizeof(h_cw1), 0, cudaMemcpyHostToDevice);
+ cudaMemcpyToSymbol( d_cw2, h_cw2, sizeof(h_cw2), 0, cudaMemcpyHostToDevice);
+ cudaMemcpyToSymbol( d_cw3, h_cw3, sizeof(h_cw3), 0, cudaMemcpyHostToDevice);
+
+// cudaFuncSetCacheConfig(x11_simd512_gpu_compress1_64, cudaFuncCachePreferL1);
+// cudaFuncSetCacheConfig(x11_simd512_gpu_compress2_64, cudaFuncCachePreferL1);
}
__host__ void x11_simd512_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
- const int threadsperblock = 256;
+ const int threadsperblock = TPB;
+
+ // Größe des dynamischen Shared Memory Bereichs
+ size_t shared_size = 0;
// berechne wie viele Thread Blocks wir brauchen
- dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
- // Größe des dynamischen Shared Memory Bereichs
- size_t shared_size = 0;
+ dim3 grid8(((threads + threadsperblock-1)/threadsperblock)*8);
+ x11_simd512_gpu_expand_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id]);
-// fprintf(stderr, "threads=%d, %d blocks, %d threads per block, %d bytes shared\n", threads, grid.x, block.x, shared_size);
+ dim3 grid((threads + threadsperblock-1)/threadsperblock);
+
+ // künstlich die Occupancy limitieren, um das totale Erschöpfen des Texture Cache zu vermeiden
+ x11_simd512_gpu_compress1_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
+ x11_simd512_gpu_compress2_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
+
+ x11_simd512_gpu_final_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector, d_temp4[thr_id], d_state[thr_id]);
- x11_simd512_gpu_hash_64<<>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
}
-
diff --git a/x11/simd_functions.cu b/x11/simd_functions.cu
new file mode 100644
index 0000000..fe5697d
--- /dev/null
+++ b/x11/simd_functions.cu
@@ -0,0 +1,1413 @@
+__device__ __forceinline__ void STEP8_IF_0(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_1(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[6];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[7];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[4];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[5];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[2];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[3];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[0];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[1];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_2(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[2];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[3];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[0];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[1];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[6];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[7];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[4];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[5];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_3(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[3];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[2];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[1];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[0];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[7];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[6];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[5];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[4];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_4(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[5];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[4];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[7];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[6];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[1];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[0];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[3];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[2];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_5(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[7];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[6];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[5];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[4];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[3];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[2];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[1];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[0];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_6(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[4];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[5];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[6];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[7];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[0];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[1];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[2];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[3];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_7(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_8(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[6];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[7];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[4];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[5];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[2];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[3];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[0];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[1];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_9(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[2];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[3];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[0];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[1];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[6];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[7];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[4];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[5];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_10(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[3];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[2];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[1];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[0];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[7];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[6];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[5];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[4];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_11(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[5];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[4];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[7];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[6];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[1];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[0];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[3];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[2];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_12(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[7];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[6];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[5];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[4];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[3];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[2];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[1];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[0];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_13(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[4];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[5];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[6];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[7];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[0];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[1];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[2];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[3];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_14(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_15(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[6];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[7];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[4];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[5];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[2];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[3];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[0];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[1];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_16(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[2];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[3];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[0];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[1];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[6];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[7];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[4];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[5];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_17(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[3];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[2];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[1];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[0];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[7];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[6];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[5];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[4];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_18(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[5];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[4];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[7];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[6];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[1];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[0];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[3];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[2];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_19(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[7];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[6];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[5];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[4];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[3];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[2];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[1];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[0];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_20(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[4];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[5];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[6];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[7];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[0];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[1];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[2];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[3];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_21(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_22(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[6];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[7];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[4];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[5];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[2];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[3];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[0];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[1];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_23(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[2];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[3];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[0];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[1];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[6];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[7];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[4];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[5];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_24(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[3];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[2];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[1];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[0];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[7];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[6];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[5];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[4];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_25(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[5];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[4];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[7];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[6];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[1];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[0];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[3];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[2];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_26(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[7];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[6];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[5];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[4];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[3];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[2];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[1];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[0];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_27(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[4];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[5];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[6];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[7];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[0];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[1];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[2];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[3];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_28(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_29(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[6];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[7];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[4];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[5];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[2];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[3];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[0];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[1];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_30(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[2];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[3];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[0];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[1];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[6];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[7];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[4];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[5];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_MAJ_31(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + MAJ(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[3];
+ temp = D[1] + w[1] + MAJ(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[2];
+ temp = D[2] + w[2] + MAJ(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[1];
+ temp = D[3] + w[3] + MAJ(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[0];
+ temp = D[4] + w[4] + MAJ(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[7];
+ temp = D[5] + w[5] + MAJ(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[6];
+ temp = D[6] + w[6] + MAJ(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[5];
+ temp = D[7] + w[7] + MAJ(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[4];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_32(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[5];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[4];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[7];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[6];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[1];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[0];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[3];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[2];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_33(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[7];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[6];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[5];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[4];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[3];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[2];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[1];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[0];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_34(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[4];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[5];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[6];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[7];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[0];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[1];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[2];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[3];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+__device__ __forceinline__ void STEP8_IF_35(const uint32_t *w, const int r, const int s, uint32_t * A, const uint32_t * B, const uint32_t * C, uint32_t * D)
+{
+ int j;
+ uint32_t temp;
+ uint32_t R[8];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ R[j] = ROTL32(A[j], r);
+ }
+ temp = D[0] + w[0] + IF(A[0], B[0], C[0]);
+ D[0] = ROTL32(temp, s) + R[1];
+ temp = D[1] + w[1] + IF(A[1], B[1], C[1]);
+ D[1] = ROTL32(temp, s) + R[0];
+ temp = D[2] + w[2] + IF(A[2], B[2], C[2]);
+ D[2] = ROTL32(temp, s) + R[3];
+ temp = D[3] + w[3] + IF(A[3], B[3], C[3]);
+ D[3] = ROTL32(temp, s) + R[2];
+ temp = D[4] + w[4] + IF(A[4], B[4], C[4]);
+ D[4] = ROTL32(temp, s) + R[5];
+ temp = D[5] + w[5] + IF(A[5], B[5], C[5]);
+ D[5] = ROTL32(temp, s) + R[4];
+ temp = D[6] + w[6] + IF(A[6], B[6], C[6]);
+ D[6] = ROTL32(temp, s) + R[7];
+ temp = D[7] + w[7] + IF(A[7], B[7], C[7]);
+ D[7] = ROTL32(temp, s) + R[6];
+#pragma unroll 8
+ for(j=0; j<8; j++) {
+ A[j] = R[j];
+ }
+}
+static __constant__ uint32_t d_cw0[8][8];
+static const uint32_t h_cw0[8][8] = {
+ 0x531B1720, 0xAC2CDE09, 0x0B902D87, 0x2369B1F4, 0x2931AA01, 0x02E4B082, 0xC914C914, 0xC1DAE1A6,
+ 0xF18C2B5C, 0x08AC306B, 0x27BFC914, 0xCEDC548D, 0xC630C4BE, 0xF18C4335, 0xF0D3427C, 0xBE3DA380,
+ 0x143C02E4, 0xA948C630, 0xA4F2DE09, 0xA71D2085, 0xA439BD84, 0x109FCD6A, 0xEEA8EF61, 0xA5AB1CE8,
+ 0x0B90D4A4, 0x3D6D039D, 0x25944D53, 0xBAA0E034, 0x5BC71E5A, 0xB1F4F2FE, 0x12CADE09, 0x548D41C3,
+ 0x3CB4F80D, 0x36ECEBC4, 0xA66443EE, 0x43351ABD, 0xC7A20C49, 0xEB0BB366, 0xF5293F98, 0x49B6DE09,
+ 0x531B29EA, 0x02E402E4, 0xDB25C405, 0x53D4E543, 0x0AD71720, 0xE1A61A04, 0xB87534C1, 0x3EDF43EE,
+ 0x213E50F0, 0x39173EDF, 0xA9485B0E, 0xEEA82EF9, 0x14F55771, 0xFAF15546, 0x3D6DD9B3, 0xAB73B92E,
+ 0x582A48FD, 0xEEA81892, 0x4F7EAA01, 0xAF10A88F, 0x11581720, 0x34C124DB, 0xD1C0AB73, 0x1E5AF0D3
+};
+__device__ __forceinline__ void Round8_0_final(uint32_t *A,
+ int r, int s, int t, int u) {
+
+
+ STEP8_IF_0(d_cw0[0], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_1(d_cw0[1], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_2(d_cw0[2], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_3(d_cw0[3], u, r, &A[8], &A[16], &A[24], A);
+ STEP8_MAJ_4(d_cw0[4], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_MAJ_5(d_cw0[5], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_MAJ_6(d_cw0[6], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_MAJ_7(d_cw0[7], u, r, &A[8], &A[16], &A[24], A);
+}
+static __constant__ uint32_t d_cw1[8][8];
+static const uint32_t h_cw1[8][8] = {
+ 0xC34C07F3, 0xC914143C, 0x599CBC12, 0xBCCBE543, 0x385EF3B7, 0x14F54C9A, 0x0AD7C068, 0xB64A21F7,
+ 0xDEC2AF10, 0xC6E9C121, 0x56B8A4F2, 0x1158D107, 0xEB0BA88F, 0x050FAABA, 0xC293264D, 0x548D46D2,
+ 0xACE5E8E0, 0x53D421F7, 0xF470D279, 0xDC974E0C, 0xD6CF55FF, 0xFD1C4F7E, 0x36EC36EC, 0x3E261E5A,
+ 0xEBC4FD1C, 0x56B839D0, 0x5B0E21F7, 0x58E3DF7B, 0x5BC7427C, 0xEF613296, 0x1158109F, 0x5A55E318,
+ 0xA7D6B703, 0x1158E76E, 0xB08255FF, 0x50F05771, 0xEEA8E8E0, 0xCB3FDB25, 0x2E40548D, 0xE1A60F2D,
+ 0xACE5D616, 0xFD1CFD1C, 0x24DB3BFB, 0xAC2C1ABD, 0xF529E8E0, 0x1E5AE5FC, 0x478BCB3F, 0xC121BC12,
+ 0xF4702B5C, 0xC293FC63, 0xDA6CB2AD, 0x45601FCC, 0xA439E1A6, 0x4E0C0D02, 0xED3621F7, 0xAB73BE3D,
+ 0x0E74D4A4, 0xF754CF95, 0xD84136EC, 0x3124AB73, 0x39D03B42, 0x0E74BCCB, 0x0F2DBD84, 0x41C35C80
+};
+__device__ __forceinline__ void Round8_1_final(uint32_t *A,
+ int r, int s, int t, int u) {
+
+
+ STEP8_IF_8(d_cw1[0], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_9(d_cw1[1], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_10(d_cw1[2], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_11(d_cw1[3], u, r, &A[8], &A[16], &A[24], A);
+ STEP8_MAJ_12(d_cw1[4], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_MAJ_13(d_cw1[5], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_MAJ_14(d_cw1[6], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_MAJ_15(d_cw1[7], u, r, &A[8], &A[16], &A[24], A);
+}
+static __constant__ uint32_t d_cw2[8][8];
+static const uint32_t h_cw2[8][8] = {
+ 0xA4135BED, 0xE10E1EF2, 0x6C4F93B1, 0x6E2191DF, 0xE2E01D20, 0xD1952E6B, 0x6A7D9583, 0x131DECE3,
+ 0x369CC964, 0xFB73048D, 0x9E9D6163, 0x280CD7F4, 0xD9C6263A, 0x1062EF9E, 0x2AC7D539, 0xAD2D52D3,
+ 0x0A03F5FD, 0x197CE684, 0xAA72558E, 0xDE5321AD, 0xF0870F79, 0x607A9F86, 0xAFE85018, 0x2AC7D539,
+ 0xE2E01D20, 0x2AC7D539, 0xC6A93957, 0x624C9DB4, 0x6C4F93B1, 0x641E9BE2, 0x452CBAD4, 0x263AD9C6,
+ 0xC964369C, 0xC3053CFB, 0x452CBAD4, 0x95836A7D, 0x4AA2B55E, 0xAB5B54A5, 0xAC4453BC, 0x74808B80,
+ 0xCB3634CA, 0xFC5C03A4, 0x4B8BB475, 0x21ADDE53, 0xE2E01D20, 0xDF3C20C4, 0xBD8F4271, 0xAA72558E,
+ 0xFC5C03A4, 0x48D0B730, 0x2AC7D539, 0xD70B28F5, 0x53BCAC44, 0x3FB6C04A, 0x14EFEB11, 0xDB982468,
+ 0x9A1065F0, 0xB0D14F2F, 0x8D5272AE, 0xC4D73B29, 0x91DF6E21, 0x949A6B66, 0x303DCFC3, 0x5932A6CE
+};
+__device__ __forceinline__ void Round8_2_final(uint32_t *A,
+ int r, int s, int t, int u) {
+
+
+ STEP8_IF_16(d_cw2[0], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_17(d_cw2[1], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_18(d_cw2[2], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_19(d_cw2[3], u, r, &A[8], &A[16], &A[24], A);
+ STEP8_MAJ_20(d_cw2[4], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_MAJ_21(d_cw2[5], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_MAJ_22(d_cw2[6], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_MAJ_23(d_cw2[7], u, r, &A[8], &A[16], &A[24], A);
+}
+static __constant__ uint32_t d_cw3[8][8];
+static const uint32_t h_cw3[8][8] = {
+ 0x1234EDCC, 0xF5140AEC, 0xCDF1320F, 0x3DE4C21C, 0x48D0B730, 0x1234EDCC, 0x131DECE3, 0x52D3AD2D,
+ 0xE684197C, 0x6D3892C8, 0x72AE8D52, 0x6FF3900D, 0x73978C69, 0xEB1114EF, 0x15D8EA28, 0x71C58E3B,
+ 0x90F66F0A, 0x15D8EA28, 0x9BE2641E, 0x65F09A10, 0xEA2815D8, 0xBD8F4271, 0x3A40C5C0, 0xD9C6263A,
+ 0xB38C4C74, 0xBAD4452C, 0x70DC8F24, 0xAB5B54A5, 0x46FEB902, 0x1A65E59B, 0x0DA7F259, 0xA32A5CD6,
+ 0xD62229DE, 0xB81947E7, 0x6D3892C8, 0x15D8EA28, 0xE59B1A65, 0x065FF9A1, 0xB2A34D5D, 0x6A7D9583,
+ 0x975568AB, 0xFC5C03A4, 0x2E6BD195, 0x966C6994, 0xF2590DA7, 0x263AD9C6, 0x5A1BA5E5, 0xB0D14F2F,
+ 0x975568AB, 0x6994966C, 0xF1700E90, 0xD3672C99, 0xCC1F33E1, 0xFC5C03A4, 0x452CBAD4, 0x4E46B1BA,
+ 0xF1700E90, 0xB2A34D5D, 0xD0AC2F54, 0x5760A8A0, 0x8C697397, 0x624C9DB4, 0xE85617AA, 0x95836A7D
+};
+__device__ __forceinline__ void Round8_3_final(uint32_t *A,
+ int r, int s, int t, int u) {
+
+
+ STEP8_IF_24(d_cw3[0], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_25(d_cw3[1], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_26(d_cw3[2], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_27(d_cw3[3], u, r, &A[8], &A[16], &A[24], A);
+ STEP8_MAJ_28(d_cw3[4], r, s, A, &A[8], &A[16], &A[24]);
+ STEP8_MAJ_29(d_cw3[5], s, t, &A[24], A, &A[8], &A[16]);
+ STEP8_MAJ_30(d_cw3[6], t, u, &A[16], &A[24], A, &A[8]);
+ STEP8_MAJ_31(d_cw3[7], u, r, &A[8], &A[16], &A[24], A);
+}
+
+#if __CUDA_ARCH__ < 350
+#define expanded_vector(x) tex1Dfetch(texRef1D_128, (x))
+#else
+//#define expanded_vector(x) tex1Dfetch(texRef1D_128, (x))
+#define expanded_vector(x) __ldg(&g_fft4[x])
+#endif
+
+__device__ __forceinline__ void Round8_0(uint32_t *A, const int thr_offset,
+ int r, int s, int t, int u, uint4 *g_fft4) {
+ uint32_t w[8];
+ uint4 hv1, hv2;
+
+ int tmp = 0 + thr_offset;
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_0(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_1(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_2(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_3(w, u, r, &A[8], &A[16], &A[24], A);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_4(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_5(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_6(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_7(w, u, r, &A[8], &A[16], &A[24], A);
+
+
+}
+__device__ __forceinline__ void Round8_1(uint32_t *A, const int thr_offset,
+ int r, int s, int t, int u, uint4 *g_fft4) {
+ uint32_t w[8];
+ uint4 hv1, hv2;
+
+ int tmp = 16 + thr_offset;
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_8(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_9(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_10(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_11(w, u, r, &A[8], &A[16], &A[24], A);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_12(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_13(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_14(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_15(w, u, r, &A[8], &A[16], &A[24], A);
+
+
+}
+__device__ __forceinline__ void Round8_2(uint32_t *A, const int thr_offset,
+ int r, int s, int t, int u, uint4 *g_fft4) {
+ uint32_t w[8];
+ uint4 hv1, hv2;
+
+ int tmp = 32 + thr_offset;
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_16(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_17(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_18(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_19(w, u, r, &A[8], &A[16], &A[24], A);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_20(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_21(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_22(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_23(w, u, r, &A[8], &A[16], &A[24], A);
+
+
+}
+__device__ __forceinline__ void Round8_3(uint32_t *A, const int thr_offset,
+ int r, int s, int t, int u, uint4 *g_fft4) {
+ uint32_t w[8];
+ uint4 hv1, hv2;
+
+ int tmp = 48 + thr_offset;
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_24(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_25(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_26(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_IF_27(w, u, r, &A[8], &A[16], &A[24], A);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_28(w, r, s, A, &A[8], &A[16], &A[24]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_29(w, s, t, &A[24], A, &A[8], &A[16]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_30(w, t, u, &A[16], &A[24], A, &A[8]);
+ hv1 = expanded_vector(tmp++); w[0] = hv1.x; w[1] = hv1.y; w[2] = hv1.z; w[3] = hv1.w;
+ hv2 = expanded_vector(tmp++); w[4] = hv2.x; w[5] = hv2.y; w[6] = hv2.z; w[7] = hv2.w;
+ STEP8_MAJ_31(w, u, r, &A[8], &A[16], &A[24], A);
+
+
+}
+
+__device__ __forceinline__ void SIMD_Compress1(uint32_t *A, const int thr_id, const uint32_t *M, uint4 *g_fft4) {
+ int i;
+ const int thr_offset = thr_id << 6; // thr_id * 128 (je zwei elemente)
+#pragma unroll 8
+ for(i=0; i<8; i++) {
+ A[i] ^= M[i];
+ (&A[8])[i] ^= M[8+i];
+ }
+ Round8_0(A, thr_offset, 3, 23, 17, 27, g_fft4);
+ Round8_1(A, thr_offset, 28, 19, 22, 7, g_fft4);
+}
+
+__device__ __forceinline__ void Compression1(const uint32_t *hashval, const int texture_id, uint4 *g_fft4, int *g_state) {
+ uint32_t A[32];
+ int i;
+#pragma unroll 32
+ for (i=0; i < 32; i++) A[i] = c_IV_512[i];
+ uint32_t buffer[16];
+#pragma unroll 16
+ for (i=0; i < 16; i++) buffer[i] = hashval[i];
+ SIMD_Compress1(A, texture_id, buffer, g_fft4);
+ uint32_t *state = (uint32_t*)&g_state[blockIdx.x * (blockDim.x*32)];
+#pragma unroll 32
+ for (i=0; i < 32; i++) state[threadIdx.x+blockDim.x*i] = A[i];
+}
+
+__device__ __forceinline__ void SIMD_Compress2(uint32_t *A, const int thr_id, uint4 *g_fft4) {
+ uint32_t IV[4][8];
+ int i;
+ const int thr_offset = thr_id << 6; // thr_id * 128 (je zwei elemente)
+#pragma unroll 8
+ for(i=0; i<8; i++) {
+ IV[0][i] = c_IV_512[i];
+ IV[1][i] = c_IV_512[8+i];
+ IV[2][i] = c_IV_512[16+i];
+ IV[3][i] = c_IV_512[24+i];
+ }
+ Round8_2(A, thr_offset, 29, 9, 15, 5, g_fft4);
+ Round8_3(A, thr_offset, 4, 13, 10, 25, g_fft4);
+ STEP8_IF_32(IV[0], 4, 13, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_33(IV[1], 13, 10, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_34(IV[2], 10, 25, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_35(IV[3], 25, 4, &A[8], &A[16], &A[24], A);
+}
+
+__device__ __forceinline__ void Compression2(const int texture_id, uint4 *g_fft4, int *g_state) {
+ uint32_t A[32];
+ int i;
+ uint32_t *state = (uint32_t*)&g_state[blockIdx.x * (blockDim.x*32)];
+#pragma unroll 32
+ for (i=0; i < 32; i++) A[i] = state[threadIdx.x+blockDim.x*i];
+ SIMD_Compress2(A, texture_id, g_fft4);
+#pragma unroll 32
+ for (i=0; i < 32; i++) state[threadIdx.x+blockDim.x*i] = A[i];
+}
+
+__device__ __forceinline__ void SIMD_Compress_Final(uint32_t *A, const uint32_t *M) {
+ uint32_t IV[4][8];
+ int i;
+#pragma unroll 8
+ for(i=0; i<8; i++) {
+ IV[0][i] = A[i];
+ IV[1][i] = (&A[8])[i];
+ IV[2][i] = (&A[16])[i];
+ IV[3][i] = (&A[24])[i];
+ }
+#pragma unroll 8
+ for(i=0; i<8; i++) {
+ A[i] ^= M[i];
+ (&A[8])[i] ^= M[8+i];
+ }
+ Round8_0_final(A, 3, 23, 17, 27);
+ Round8_1_final(A, 28, 19, 22, 7);
+ Round8_2_final(A, 29, 9, 15, 5);
+ Round8_3_final(A, 4, 13, 10, 25);
+ STEP8_IF_32(IV[0], 4, 13, A, &A[8], &A[16], &A[24]);
+ STEP8_IF_33(IV[1], 13, 10, &A[24], A, &A[8], &A[16]);
+ STEP8_IF_34(IV[2], 10, 25, &A[16], &A[24], A, &A[8]);
+ STEP8_IF_35(IV[3], 25, 4, &A[8], &A[16], &A[24], A);
+}
+
+__device__ __forceinline__ void Final(uint32_t *hashval, const int texture_id, uint4 *g_fft4, int *g_state) {
+ uint32_t A[32];
+ int i;
+ uint32_t *state = (uint32_t*)&g_state[blockIdx.x * (blockDim.x*32)];
+#pragma unroll 32
+ for (i=0; i < 32; i++) A[i] = state[threadIdx.x+blockDim.x*i];
+ uint32_t buffer[16];
+ buffer[0] = 512;
+#pragma unroll 15
+ for (i=1; i < 16; i++) buffer[i] = 0;
+ SIMD_Compress_Final(A, buffer);
+#pragma unroll 16
+ for (i=0; i < 16; i++)
+ hashval[i] = A[i];
+}
diff --git a/x11/x11.cu b/x11/x11.cu
index f5382ea..77b6a72 100644
--- a/x11/x11.cu
+++ b/x11/x11.cu
@@ -163,12 +163,14 @@ extern "C" int scanhash_x11(int thr_id, uint32_t *pdata,
const uint32_t first_nonce = pdata[19];
// TODO: entfernen für eine Release! Ist nur zum Testen!
- if (opt_benchmark)
+ if (opt_benchmark) {
((uint32_t*)ptarget)[7] = 0x0000ff;
+ pdata[17] = 0;
+ }
const uint32_t Htarg = ptarget[7];
- const int throughput = 256*256*16;
+ const int throughput = 256*256*8;
static bool init[8] = {0,0,0,0,0,0,0,0};
if (!init[thr_id])