|
|
|
@ -4,9 +4,9 @@
@@ -4,9 +4,9 @@
|
|
|
|
|
#include <memory.h> |
|
|
|
|
|
|
|
|
|
#include "cuda_helper.h" |
|
|
|
|
#include <host_defines.h> |
|
|
|
|
|
|
|
|
|
// globaler Speicher für alle HeftyHashes aller Threads |
|
|
|
|
#include "miner.h" |
|
|
|
|
|
|
|
|
|
__constant__ uint32_t pTarget[8]; // Single GPU |
|
|
|
|
__constant__ uint32_t groestlcoin_gpu_msg[32]; |
|
|
|
|
|
|
|
|
@ -24,135 +24,138 @@ __global__ __launch_bounds__(256, 4)
@@ -24,135 +24,138 @@ __global__ __launch_bounds__(256, 4)
|
|
|
|
|
void groestlcoin_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *resNounce) |
|
|
|
|
{ |
|
|
|
|
#if __CUDA_ARCH__ >= 300 |
|
|
|
|
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen |
|
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4; |
|
|
|
|
if (thread < threads) |
|
|
|
|
{ |
|
|
|
|
// GROESTL |
|
|
|
|
uint32_t paddedInput[8]; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for(int k=0;k<8;k++) paddedInput[k] = groestlcoin_gpu_msg[4*k+threadIdx.x%4]; |
|
|
|
|
|
|
|
|
|
uint32_t nounce = startNounce + thread; |
|
|
|
|
if ((threadIdx.x % 4) == 3) |
|
|
|
|
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19 |
|
|
|
|
|
|
|
|
|
uint32_t msgBitsliced[8]; |
|
|
|
|
to_bitslice_quad(paddedInput, msgBitsliced); |
|
|
|
|
|
|
|
|
|
uint32_t state[8]; |
|
|
|
|
for (int round=0; round<2; round++) |
|
|
|
|
{ |
|
|
|
|
groestl512_progressMessage_quad(state, msgBitsliced); |
|
|
|
|
|
|
|
|
|
if (round < 1) |
|
|
|
|
{ |
|
|
|
|
// Verkettung zweier Runden inclusive Padding. |
|
|
|
|
msgBitsliced[ 0] = __byte_perm(state[ 0], 0x00800100, 0x4341 + ((threadIdx.x%4)==3)*0x2000); |
|
|
|
|
msgBitsliced[ 1] = __byte_perm(state[ 1], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 2] = __byte_perm(state[ 2], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 3] = __byte_perm(state[ 3], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 4] = __byte_perm(state[ 4], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 5] = __byte_perm(state[ 5], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 6] = __byte_perm(state[ 6], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 7] = __byte_perm(state[ 7], 0x00800100, 0x4341 + ((threadIdx.x%4)==0)*0x0010); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash |
|
|
|
|
uint32_t out_state[16]; |
|
|
|
|
from_bitslice_quad(state, out_state); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x % 4 == 0) |
|
|
|
|
{ |
|
|
|
|
int i, position = -1; |
|
|
|
|
bool rc = true; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i = 7; i >= 0; i--) { |
|
|
|
|
if (out_state[i] > pTarget[i]) { |
|
|
|
|
if(position < i) { |
|
|
|
|
position = i; |
|
|
|
|
rc = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (out_state[i] < pTarget[i]) { |
|
|
|
|
if(position < i) { |
|
|
|
|
position = i; |
|
|
|
|
rc = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(rc == true) |
|
|
|
|
if(resNounce[0] > nounce) |
|
|
|
|
resNounce[0] = nounce; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen |
|
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4; |
|
|
|
|
if (thread < threads) |
|
|
|
|
{ |
|
|
|
|
// GROESTL |
|
|
|
|
uint32_t paddedInput[8]; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for(int k=0;k<8;k++) paddedInput[k] = groestlcoin_gpu_msg[4*k+threadIdx.x%4]; |
|
|
|
|
|
|
|
|
|
uint32_t nounce = startNounce + thread; |
|
|
|
|
if ((threadIdx.x % 4) == 3) |
|
|
|
|
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19 |
|
|
|
|
|
|
|
|
|
uint32_t msgBitsliced[8]; |
|
|
|
|
to_bitslice_quad(paddedInput, msgBitsliced); |
|
|
|
|
|
|
|
|
|
uint32_t state[8]; |
|
|
|
|
for (int round=0; round<2; round++) |
|
|
|
|
{ |
|
|
|
|
groestl512_progressMessage_quad(state, msgBitsliced); |
|
|
|
|
|
|
|
|
|
if (round < 1) |
|
|
|
|
{ |
|
|
|
|
// Verkettung zweier Runden inclusive Padding. |
|
|
|
|
msgBitsliced[ 0] = __byte_perm(state[ 0], 0x00800100, 0x4341 + ((threadIdx.x%4)==3)*0x2000); |
|
|
|
|
msgBitsliced[ 1] = __byte_perm(state[ 1], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 2] = __byte_perm(state[ 2], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 3] = __byte_perm(state[ 3], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 4] = __byte_perm(state[ 4], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 5] = __byte_perm(state[ 5], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 6] = __byte_perm(state[ 6], 0x00800100, 0x4341); |
|
|
|
|
msgBitsliced[ 7] = __byte_perm(state[ 7], 0x00800100, 0x4341 + ((threadIdx.x%4)==0)*0x0010); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash |
|
|
|
|
uint32_t out_state[16]; |
|
|
|
|
from_bitslice_quad(state, out_state); |
|
|
|
|
|
|
|
|
|
if (threadIdx.x % 4 == 0) |
|
|
|
|
{ |
|
|
|
|
int i, position = -1; |
|
|
|
|
bool rc = true; |
|
|
|
|
|
|
|
|
|
#pragma unroll 8 |
|
|
|
|
for (i = 7; i >= 0; i--) { |
|
|
|
|
if (out_state[i] > pTarget[i]) { |
|
|
|
|
if(position < i) { |
|
|
|
|
position = i; |
|
|
|
|
rc = false; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
if (out_state[i] < pTarget[i]) { |
|
|
|
|
if(position < i) { |
|
|
|
|
position = i; |
|
|
|
|
rc = true; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if(rc == true) |
|
|
|
|
if(resNounce[0] > nounce) |
|
|
|
|
resNounce[0] = nounce; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
|
void groestlcoin_cpu_init(int thr_id, uint32_t threads) |
|
|
|
|
{ |
|
|
|
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); |
|
|
|
|
// to check if the binary supports SM3+ |
|
|
|
|
cuda_get_arch(thr_id); |
|
|
|
|
|
|
|
|
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
|
void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn) |
|
|
|
|
{ |
|
|
|
|
// Nachricht expandieren und setzen |
|
|
|
|
uint32_t msgBlock[32]; |
|
|
|
|
uint32_t msgBlock[32]; |
|
|
|
|
|
|
|
|
|
memset(msgBlock, 0, sizeof(uint32_t) * 32); |
|
|
|
|
memcpy(&msgBlock[0], data, 80); |
|
|
|
|
memset(msgBlock, 0, sizeof(uint32_t) * 32); |
|
|
|
|
memcpy(&msgBlock[0], data, 80); |
|
|
|
|
|
|
|
|
|
// Erweitere die Nachricht auf den Nachrichtenblock (padding) |
|
|
|
|
// Unsere Nachricht hat 80 Byte |
|
|
|
|
msgBlock[20] = 0x80; |
|
|
|
|
msgBlock[31] = 0x01000000; |
|
|
|
|
// Erweitere die Nachricht auf den Nachrichtenblock (padding) |
|
|
|
|
// Unsere Nachricht hat 80 Byte |
|
|
|
|
msgBlock[20] = 0x80; |
|
|
|
|
msgBlock[31] = 0x01000000; |
|
|
|
|
|
|
|
|
|
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird |
|
|
|
|
// auf der GPU ausgeführt) |
|
|
|
|
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird |
|
|
|
|
// auf der GPU ausgeführt) |
|
|
|
|
|
|
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) |
|
|
|
|
cudaMemcpyToSymbol( groestlcoin_gpu_msg, |
|
|
|
|
msgBlock, |
|
|
|
|
128); |
|
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch) |
|
|
|
|
cudaMemcpyToSymbol( groestlcoin_gpu_msg, |
|
|
|
|
msgBlock, |
|
|
|
|
128); |
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
cudaMemcpyToSymbol( pTarget, |
|
|
|
|
pTargetIn, |
|
|
|
|
sizeof(uint32_t) * 8 ); |
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
cudaMemcpyToSymbol( pTarget, |
|
|
|
|
pTargetIn, |
|
|
|
|
sizeof(uint32_t) * 8 ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
__host__ |
|
|
|
|
void groestlcoin_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) |
|
|
|
|
{ |
|
|
|
|
uint32_t threadsperblock = 256; |
|
|
|
|
uint32_t threadsperblock = 256; |
|
|
|
|
|
|
|
|
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle |
|
|
|
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl |
|
|
|
|
int factor = 4; |
|
|
|
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle |
|
|
|
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl |
|
|
|
|
int factor = 4; |
|
|
|
|
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
|
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); |
|
|
|
|
dim3 block(threadsperblock); |
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen |
|
|
|
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock)); |
|
|
|
|
dim3 block(threadsperblock); |
|
|
|
|
|
|
|
|
|
// Größe des dynamischen Shared Memory Bereichs |
|
|
|
|
size_t shared_size = 0; |
|
|
|
|
// Größe des dynamischen Shared Memory Bereichs |
|
|
|
|
size_t shared_size = 0; |
|
|
|
|
|
|
|
|
|
if (device_sm[device_map[thr_id]] < 300) { |
|
|
|
|
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); |
|
|
|
|
return; |
|
|
|
|
} |
|
|
|
|
int dev_id = device_map[thr_id]; |
|
|
|
|
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300) { |
|
|
|
|
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)"); |
|
|
|
|
proper_exit(EXIT_CODE_CUDA_ERROR); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
groestlcoin_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id]); |
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); |
|
|
|
|
groestlcoin_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id]); |
|
|
|
|
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
|
|
MyStreamSynchronize(NULL, 0, thr_id); |
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last |
|
|
|
|
MyStreamSynchronize(NULL, 0, thr_id); |
|
|
|
|
|
|
|
|
|
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
|
|
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost); |
|
|
|
|
} |
|
|
|
|