committing a faster table based version of the GroestlCoin algo for those who can compile the source code

This commit is contained in:
Christian Buchner 2014-04-17 23:38:48 +02:00
parent 2ca6ede92b
commit bdef3bb22e

View File

@ -7,6 +7,7 @@
#include <stdio.h> #include <stdio.h>
#include <memory.h> #include <memory.h>
// IMPORTANT: leave this enabled!
#define USE_SHARED 1 #define USE_SHARED 1
// aus cpu-miner.c // aus cpu-miner.c
@ -15,17 +16,24 @@ extern int device_map[8];
// aus heavy.cu // aus heavy.cu
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id); extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
// aus driver.c
extern "C" void set_device(int device);
// Folgende Definitionen später durch header ersetzen // Folgende Definitionen später durch header ersetzen
typedef unsigned char uint8_t; typedef unsigned char uint8_t;
typedef unsigned int uint32_t; typedef unsigned int uint32_t;
typedef unsigned long long uint64_t; typedef unsigned long long uint64_t;
// diese Struktur wird in der Init Funktion angefordert
static cudaDeviceProp props;
// globaler Speicher für alle HeftyHashes aller Threads // globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU __constant__ uint32_t pTarget[8]; // Single GPU
extern uint32_t *d_resultNonce[8]; extern uint32_t *d_resultNonce[8];
__constant__ uint32_t groestlcoin_gpu_msg[32]; __constant__ uint32_t groestlcoin_gpu_msg[32];
#define SPH_C32(x) ((uint32_t)(x ## U))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF)) #define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#define PC32up(j, r) ((uint32_t)((j) + (r))) #define PC32up(j, r) ((uint32_t)((j) + (r)))
@ -33,17 +41,16 @@ __constant__ uint32_t groestlcoin_gpu_msg[32];
#define QC32up(j, r) 0xFFFFFFFF #define QC32up(j, r) 0xFFFFFFFF
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24))) #define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
#define B32_0(x) ((x) & 0xFF) #define B32_0(x) __byte_perm(x, 0, 0x4440)
#define B32_1(x) (((x) >> 8) & 0xFF) //((x) & 0xFF)
#define B32_2(x) (((x) >> 16) & 0xFF) #define B32_1(x) __byte_perm(x, 0, 0x4441)
#define B32_3(x) ((x) >> 24) //(((x) >> 8) & 0xFF)
#define B32_2(x) __byte_perm(x, 0, 0x4442)
#define SPH_C32(x) ((uint32_t)(x ## U)) //(((x) >> 16) & 0xFF)
#define C32e(x) ((SPH_C32(x) >> 24) \ #define B32_3(x) __byte_perm(x, 0, 0x4443)
| ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \ //((x) >> 24)
| ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \
| ((SPH_C32(x) << 24) & SPH_C32(0xFF000000)))
#if 0
#if USE_SHARED #if USE_SHARED
#define T0up(x) (*((uint32_t*)mixtabs + ( (x)))) #define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) (*((uint32_t*)mixtabs + (256+(x)))) #define T0dn(x) (*((uint32_t*)mixtabs + (256+(x))))
@ -63,6 +70,18 @@ __constant__ uint32_t groestlcoin_gpu_msg[32];
#define T3up(x) tex1Dfetch(t3up1, x) #define T3up(x) tex1Dfetch(t3up1, x)
#define T3dn(x) tex1Dfetch(t3dn1, x) #define T3dn(x) tex1Dfetch(t3dn1, x)
#endif #endif
#endif
// a healthy mix between shared and textured access provides the highest speed!
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
#define T0dn(x) tex1Dfetch(t0dn1, x)
#define T1up(x) tex1Dfetch(t1up1, x)
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
#define T2up(x) tex1Dfetch(t2up1, x)
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
#define T3dn(x) tex1Dfetch(t3dn1, x)
texture<unsigned int, 1, cudaReadModeElementType> t0up1; texture<unsigned int, 1, cudaReadModeElementType> t0up1;
texture<unsigned int, 1, cudaReadModeElementType> t0dn1; texture<unsigned int, 1, cudaReadModeElementType> t0dn1;
texture<unsigned int, 1, cudaReadModeElementType> t1up1; texture<unsigned int, 1, cudaReadModeElementType> t1up1;
@ -81,21 +100,6 @@ extern uint32_t T2dn_cpu[];
extern uint32_t T3up_cpu[]; extern uint32_t T3up_cpu[];
extern uint32_t T3dn_cpu[]; extern uint32_t T3dn_cpu[];
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define S(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#else
// Kepler (Compute 3.5)
#define S(x, n) __funnelshift_r( x, x, n );
#endif
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (S(x, 2) ^ S(x, 13) ^ S(x, 22))
#define S1(x) (S(x, 6) ^ S(x, 11) ^ S(x, 25))
#define s0(x) (S(x, 7) ^ S(x, 18) ^ R(x, 3))
#define s1(x) (S(x, 17) ^ S(x, 19) ^ R(x, 10))
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) ) #define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
@ -152,32 +156,25 @@ __device__ __forceinline__ void groestlcoin_perm_P(uint32_t *a, char *mixtabs)
for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 13); break; for(int k=0;k<16;k++) a[(k*2)+0] ^= PC32up(k * 0x10, 13); break;
} }
// RBTT // RBTT
#pragma unroll 16 #pragma unroll 16
for(int k=0;k<32;k+=2) for(int k=0;k<32;k+=2)
{ {
t[k + 0] = T0up( B32_0(a[k & 0x1f]) ) ^ uint32_t t0_0 = B32_0(a[(k ) & 0x1f]), t9_0 = B32_0(a[(k + 9) & 0x1f]);
T1up( B32_1(a[(k + 2) & 0x1f]) ) ^ uint32_t t2_1 = B32_1(a[(k + 2) & 0x1f]), t11_1 = B32_1(a[(k + 11) & 0x1f]);
T2up( B32_2(a[(k + 4) & 0x1f]) ) ^ uint32_t t4_2 = B32_2(a[(k + 4) & 0x1f]), t13_2 = B32_2(a[(k + 13) & 0x1f]);
T3up( B32_3(a[(k + 6) & 0x1f]) ) ^ uint32_t t6_3 = B32_3(a[(k + 6) & 0x1f]), t23_3 = B32_3(a[(k + 23) & 0x1f]);
T0dn( B32_0(a[(k + 9) & 0x1f]) ) ^
T1dn( B32_1(a[(k + 11) & 0x1f]) ) ^ t[k + 0] = T0up( t0_0 ) ^ T1up( t2_1 ) ^ T2up( t4_2 ) ^ T3up( t6_3 ) ^
T2dn( B32_2(a[(k + 13) & 0x1f]) ) ^ T0dn( t9_0 ) ^ T1dn( t11_1 ) ^ T2dn( t13_2 ) ^ T3dn( t23_3 );
T3dn( B32_3(a[(k + 23) & 0x1f]) );
t[k + 1] = T0dn( B32_0(a[k & 0x1f]) ) ^ t[k + 1] = T0dn( t0_0 ) ^ T1dn( t2_1 ) ^ T2dn( t4_2 ) ^ T3dn( t6_3 ) ^
T1dn( B32_1(a[(k + 2) & 0x1f]) ) ^ T0up( t9_0 ) ^ T1up( t11_1 ) ^ T2up( t13_2 ) ^ T3up( t23_3 );
T2dn( B32_2(a[(k + 4) & 0x1f]) ) ^ }
T3dn( B32_3(a[(k + 6) & 0x1f]) ) ^
T0up( B32_0(a[(k + 9) & 0x1f]) ) ^
T1up( B32_1(a[(k + 11) & 0x1f]) ) ^
T2up( B32_2(a[(k + 13) & 0x1f]) ) ^
T3up( B32_3(a[(k + 23) & 0x1f]) );
}
#pragma unroll 32 #pragma unroll 32
for(int k=0;k<32;k++) for(int k=0;k<32;k++)
a[k] = t[k]; a[k] = t[k];
} }
} }
__device__ __forceinline__ void groestlcoin_perm_Q(uint32_t *a, char *mixtabs) __device__ __forceinline__ void groestlcoin_perm_Q(uint32_t *a, char *mixtabs)
@ -233,32 +230,25 @@ __device__ __forceinline__ void groestlcoin_perm_Q(uint32_t *a, char *mixtabs)
for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 13); a[(k*2)+1] ^= QC32dn(k * 0x10, 13);} break; for(int k=0;k<16;k++) { a[(k*2)+0] ^= QC32up(k * 0x10, 13); a[(k*2)+1] ^= QC32dn(k * 0x10, 13);} break;
} }
// RBTT // RBTT
#pragma unroll 16 #pragma unroll 16
for(int k=0;k<32;k+=2) for(int k=0;k<32;k+=2)
{ {
t[k + 0] = T0up( B32_0(a[(k + 2) & 0x1f]) ) ^ uint32_t t2_0 = B32_0(a[(k + 2) & 0x1f]), t1_0 = B32_0(a[(k + 1) & 0x1f]);
T1up( B32_1(a[(k + 6) & 0x1f]) ) ^ uint32_t t6_1 = B32_1(a[(k + 6) & 0x1f]), t5_1 = B32_1(a[(k + 5) & 0x1f]);
T2up( B32_2(a[(k + 10) & 0x1f]) ) ^ uint32_t t10_2 = B32_2(a[(k + 10) & 0x1f]), t9_2 = B32_2(a[(k + 9) & 0x1f]);
T3up( B32_3(a[(k + 22) & 0x1f]) ) ^ uint32_t t22_3 = B32_3(a[(k + 22) & 0x1f]), t13_3 = B32_3(a[(k + 13) & 0x1f]);
T0dn( B32_0(a[(k + 1) & 0x1f]) ) ^
T1dn( B32_1(a[(k + 5) & 0x1f]) ) ^ t[k + 0] = T0up( t2_0 ) ^ T1up( t6_1 ) ^ T2up( t10_2 ) ^ T3up( t22_3 ) ^
T2dn( B32_2(a[(k + 9) & 0x1f]) ) ^ T0dn( t1_0 ) ^ T1dn( t5_1 ) ^ T2dn( t9_2 ) ^ T3dn( t13_3 );
T3dn( B32_3(a[(k + 13) & 0x1f]) );
t[k + 1] = T0dn( B32_0(a[(k + 2) & 0x1f]) ) ^ t[k + 1] = T0dn( t2_0 ) ^ T1dn( t6_1 ) ^ T2dn( t10_2 ) ^ T3dn( t22_3 ) ^
T1dn( B32_1(a[(k + 6) & 0x1f]) ) ^ T0up( t1_0 ) ^ T1up( t5_1 ) ^ T2up( t9_2 ) ^ T3up( t13_3 );
T2dn( B32_2(a[(k + 10) & 0x1f]) ) ^ }
T3dn( B32_3(a[(k + 22) & 0x1f]) ) ^
T0up( B32_0(a[(k + 1) & 0x1f]) ) ^
T1up( B32_1(a[(k + 5) & 0x1f]) ) ^
T2up( B32_2(a[(k + 9) & 0x1f]) ) ^
T3up( B32_3(a[(k + 13) & 0x1f]) );
}
#pragma unroll 32 #pragma unroll 32
for(int k=0;k<32;k++) for(int k=0;k<32;k++)
a[k] = t[k]; a[k] = t[k];
} }
} }
#if USE_SHARED #if USE_SHARED
__global__ void /* __launch_bounds__(256) */ __global__ void /* __launch_bounds__(256) */
@ -271,14 +261,17 @@ __global__ void
#if USE_SHARED #if USE_SHARED
extern __shared__ char mixtabs[]; extern __shared__ char mixtabs[];
*((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x); if (threadIdx.x < 256)
*((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x); {
*((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x); *((uint32_t*)mixtabs + ( threadIdx.x)) = tex1Dfetch(t0up1, threadIdx.x);
*((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x); *((uint32_t*)mixtabs + (256+threadIdx.x)) = tex1Dfetch(t0dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x); *((uint32_t*)mixtabs + (512+threadIdx.x)) = tex1Dfetch(t1up1, threadIdx.x);
*((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x); *((uint32_t*)mixtabs + (768+threadIdx.x)) = tex1Dfetch(t1dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x); *((uint32_t*)mixtabs + (1024+threadIdx.x)) = tex1Dfetch(t2up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x); *((uint32_t*)mixtabs + (1280+threadIdx.x)) = tex1Dfetch(t2dn1, threadIdx.x);
*((uint32_t*)mixtabs + (1536+threadIdx.x)) = tex1Dfetch(t3up1, threadIdx.x);
*((uint32_t*)mixtabs + (1792+threadIdx.x)) = tex1Dfetch(t3dn1, threadIdx.x);
}
__syncthreads(); __syncthreads();
#endif #endif
@ -407,8 +400,11 @@ __global__ void
// Setup-Funktionen // Setup-Funktionen
__host__ void groestlcoin_cpu_init(int thr_id, int threads) __host__ void groestlcoin_cpu_init(int thr_id, int threads)
{ {
cudaSetDevice(device_map[thr_id]); cudaSetDevice(device_map[thr_id]);
cudaDeviceSetCacheConfig( cudaFuncCachePreferShared );
cudaGetDeviceProperties(&props, device_map[thr_id]);
cudaDeviceSetCacheConfig( cudaFuncCachePreferL1 );
// Texturen mit obigem Makro initialisieren // Texturen mit obigem Makro initialisieren
texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256); texDef(t0up1, d_T0up, T0up_cpu, sizeof(uint32_t)*256);
texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256); texDef(t0dn1, d_T0dn, T0dn_cpu, sizeof(uint32_t)*256);
@ -452,11 +448,9 @@ __host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
__host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) __host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
{ {
#if USE_SHARED // Compute 3.x und 5.x Geräte am besten mit 768 Threads ansteuern,
const int threadsperblock = 256; // Alignment mit mixtab Grösse. NICHT ÄNDERN // alle anderen mit 512 Threads.
#else int threadsperblock = (props.major >= 3) ? 768 : 512;
const int threadsperblock = 512; // so einstellen wie gewünscht ;-)
#endif
// berechne wie viele Thread Blocks wir brauchen // berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1)/threadsperblock); dim3 grid((threads + threadsperblock-1)/threadsperblock);