@ -1,11 +1,15 @@
/**
/**
* Blake-256 Cuda Kernel (Tested on SM 5.0)
* Blake-256 Cuda Kernel (Tested on SM 5.0)
*
*
* Tanguy Pruvot - Aug . 2014
* Tanguy Pruvot - Nov . 2014
*/
*/
#define PRECALC64 1
#include "miner.h"
#include "miner.h"
typedef unsigned char uchar;
extern "C" {
extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_blake.h"
#include <stdint.h>
#include <stdint.h>
@ -15,9 +19,7 @@ extern "C" {
/* threads per block */
/* threads per block */
#define TPB 128
#define TPB 128
/* crc32.c */
/* added in sph_blake.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
extern "C" int blake256_rounds = 14;
extern "C" int blake256_rounds = 14;
/* hash by cpu with blake 256 */
/* hash by cpu with blake 256 */
@ -26,11 +28,11 @@ extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14
unsigned char hash[64];
unsigned char hash[64];
sph_blake256_context ctx;
sph_blake256_context ctx;
/* in sph_blake.c */
blake256_rounds = rounds;
blake256_rounds = rounds;
sph_blake256_init(&ctx);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
memcpy(output, hash, 32);
}
}
@ -41,11 +43,20 @@ extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14
// in cpu-miner.c
// in cpu-miner.c
extern bool opt_n_threads;
extern bool opt_n_threads;
extern bool opt_benchmark ;
extern bool opt_tracegpu ;
extern int device_map[8];
extern int device_map[8];
__constant__
__constant__
#if PRECALC64
static uint32_t __align__(32) c_data[11];
#else
static uint32_t __align__(32) c_data[20];
static uint32_t __align__(32) c_data[20];
/* midstate hash cache, this algo is run on 2 parts */
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
/* crc32.c */
extern "C" uint32_t crc32_u32t(const uint32_t *buf, size_t size);
#endif
/* 8 adapters max (-t threads) */
/* 8 adapters max (-t threads) */
static uint32_t *d_resNonce[8];
static uint32_t *d_resNonce[8];
@ -53,14 +64,7 @@ static uint32_t *h_resNonce[8];
/* max count of found nounces in one call */
/* max count of found nounces in one call */
#define NBN 2
#define NBN 2
static uint32_t extra_results[NBN-1] = { MAXU };
static uint32_t extra_results[NBN] = { MAXU };
#define USE_CACHE 1
/* midstate hash cache, this algo is run on 2 parts */
#if USE_CACHE
__device__ static uint32_t cache[8];
__device__ static uint32_t prevsum = 0;
#endif
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
/* prefer uint32_t to prevent size conversions = speed +5/10 % */
__constant__
__constant__
@ -84,6 +88,7 @@ const uint32_t host_sigma[16][16] = {
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 }
};
};
#if !PRECALC64
__device__ __constant__
__device__ __constant__
static const uint32_t __align__(32) c_IV256[8] = {
static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
SPH_C32(0x6A09E667), SPH_C32(0xBB67AE85),
@ -91,6 +96,7 @@ static const uint32_t __align__(32) c_IV256[8] = {
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x510E527F), SPH_C32(0x9B05688C),
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
SPH_C32(0x1F83D9AB), SPH_C32(0x5BE0CD19)
};
};
#endif
__device__ __constant__
__device__ __constant__
static const uint32_t __align__(32) c_u256[16] = {
static const uint32_t __align__(32) c_u256[16] = {
@ -105,8 +111,8 @@ static const uint32_t __align__(32) c_u256[16] = {
};
};
#define GS(a,b,c,d,x) { \
#define GS(a,b,c,d,x) { \
const uint32_t idx1 = c_sigma[i ][x]; \
const uint32_t idx1 = c_sigma[r ][x]; \
const uint32_t idx2 = c_sigma[i ][x+1]; \
const uint32_t idx2 = c_sigma[r ][x+1]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[a] += (m[idx1] ^ c_u256[idx2]) + v[b]; \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[d] = SPH_ROTL32(v[d] ^ v[a], 16); \
v[c] += v[d]; \
v[c] += v[d]; \
@ -139,7 +145,11 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, co
m[3] = block[3];
m[3] = block[3];
for (uint32_t i = 4; i < 16; i++) {
for (uint32_t i = 4; i < 16; i++) {
#if PRECALC64
m[i] = c_Padding[i];
#else
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
m[i] = (T0 == 0x200) ? block[i] : c_Padding[i];
#endif
}
}
//#pragma unroll 8
//#pragma unroll 8
@ -156,7 +166,7 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, co
v[14] = c_u256[6];
v[14] = c_u256[6];
v[15] = c_u256[7];
v[15] = c_u256[7];
for (int i = 0; i < rounds; i ++) {
for (int r = 0; r < rounds; r ++) {
/* column step */
/* column step */
GS(0, 4, 0x8, 0xC, 0x0);
GS(0, 4, 0x8, 0xC, 0x0);
GS(1, 5, 0x9, 0xD, 0x2);
GS(1, 5, 0x9, 0xD, 0x2);
@ -168,14 +178,20 @@ void blake256_compress(uint32_t *h, const uint32_t *block, const uint32_t T0, co
GS(2, 7, 0x8, 0xD, 0xC);
GS(2, 7, 0x8, 0xD, 0xC);
GS(3, 4, 0x9, 0xE, 0xE);
GS(3, 4, 0x9, 0xE, 0xE);
}
}
#if PRECALC64
// only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U];
#else
//#pragma unroll 16
//#pragma unroll 16
for (uint32_t i = 0; i < 16; i++) {
for (uint32_t i = 0; i < 16; i++) {
uint32_t j = i % 8U;
uint32_t j = i % 8U;
h[j] ^= v[i];
h[j] ^= v[i];
}
}
#endif
}
}
#if !PRECALC64 /* original method */
__global__
__global__
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNounce,
void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uint32_t *resNounce,
const uint64_t highTarget, const int crcsum, const int rounds)
const uint64_t highTarget, const int crcsum, const int rounds)
@ -191,9 +207,6 @@ void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uin
h[i] = c_IV256[i];
h[i] = c_IV256[i];
}
}
#if !USE_CACHE
blake256_compress(h, c_data, 512);
#else
if (crcsum != prevsum) {
if (crcsum != prevsum) {
prevsum = crcsum;
prevsum = crcsum;
blake256_compress(h, c_data, 512, rounds);
blake256_compress(h, c_data, 512, rounds);
@ -207,8 +220,8 @@ void blake256_gpu_hash_80(const uint32_t threads, const uint32_t startNonce, uin
h[i] = cache[i];
h[i] = cache[i];
}
}
}
}
#endif
// ------ Close: Bytes 64 to 80 ------
// ------ Close: Bytes 64 to 80 ------
uint32_t ending[4];
uint32_t ending[4];
ending[0] = c_data[16];
ending[0] = c_data[16];
@ -273,15 +286,131 @@ void blake256_cpu_setBlock_80(uint32_t *pdata, const uint32_t *ptarget)
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, sizeof(data), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
}
}
#else
/* ############################################################################################################################### */
/* Precalculated 1st 64-bytes block (midstate) method */
__global__
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNounce,
const uint64_t highTarget, const int rounds, const bool trace)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nounce = startNonce + thread;
uint32_t h[8];
#pragma unroll
for(int i=0; i<8; i++) {
h[i] = c_data[i];
}
// ------ Close: Bytes 64 to 80 ------
uint32_t ending[4];
ending[0] = c_data[8];
ending[1] = c_data[9];
ending[2] = c_data[10];
ending[3] = nounce; /* our tested value */
blake256_compress(h, ending, 640, rounds);
//if (h[7] == 0 && high64 <= highTarget) {
if (h[7] == 0) {
#if NBN == 2
/* keep the smallest nounce, + extra one if found */
if (resNounce[0] > nounce) {
// printf("%llx %llx \n", high64, highTarget);
resNounce[1] = resNounce[0];
resNounce[0] = nounce;
}
else
resNounce[1] = nounce;
#else
resNounce[0] = nounce;
#endif
if (trace) {
#ifdef _DEBUG
printf("tgt: %16llx\n", highTarget);
uint64_t high64 = ((uint64_t*)h)[3];
printf("gpu: %16llx\n", high64);
printf("gpu: %16llx\n", cuda_swab64(h64));
printf("gpu: %16x\n", cuda_swab32(h[6]));
printf("gpu: %08x %08x\n", h[6], h[7]);
#endif
}
}
}
}
__host__
static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const int8_t rounds)
{
const int threadsperblock = TPB;
uint32_t result = MAXU;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget, (int) rounds, opt_tracegpu);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize(); /* seems no more required */
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14)
{
sph_blake256_context ctx;
/* in sph_blake.c */
blake256_rounds = rounds;
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 64);
memcpy(output, (uchar*)ctx.H, 32);
}
__host__
void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t data[11];
memcpy(data, midstate, 32);
data[8] = penddata[0];
data[9] = penddata[1];
data[10]= penddata[2];
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_data, data, 32 + 12, 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_sigma, host_sigma, sizeof(host_sigma), 0, cudaMemcpyHostToDevice));
}
#endif
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{
{
const uint32_t first_nonce = pdata[19];
const uint32_t first_nonce = pdata[19];
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
static bool init[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
uint32_t throughput = min(TPB * 4096, max_nonce - first_nonce);
uint64_t targetHigh = ((uint64_t*)ptarget)[3]; // 0x00000000.0fffffff
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
uint32_t endiandata[20];
uint32_t crcsum = MAXU;
#if PRECALC64
uint32_t midstate[8];
#else
uint32_t crcsum;
#endif
/* todo: -i param */
uint32_t throughput = min(256 * 4096, max_nonce - first_nonce);
int rc = 0;
int rc = 0;
#if NBN > 1
#if NBN > 1
@ -298,7 +427,14 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
#endif
#endif
if (opt_benchmark)
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x00000f;
targetHigh = 0x1ULL << 32;
if (opt_tracegpu) {
/* test call from util.c */
throughput = 1;
for (int k = 0; k < 20; k++)
pdata[k] = swab32(pdata[k]);
}
if (!init[thr_id]) {
if (!init[thr_id]) {
if (opt_n_threads > 1) {
if (opt_n_threads > 1) {
@ -309,28 +445,38 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
init[thr_id] = true;
init[thr_id] = true;
}
}
#if PRECALC64
for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]);
blake256mid(midstate, endiandata, blakerounds);
blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget);
#else
blake256_cpu_setBlock_80(pdata, ptarget);
blake256_cpu_setBlock_80(pdata, ptarget);
#if USE_CACHE
crcsum = crc32_u32t(pdata, 64);
crcsum = crc32_u32t(pdata, 64);
#endif
#endif /* PRECALC64 */
do {
do {
// GPU HASH
uint32_t foundNonce =
uint32_t foundNonce = blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
#if PRECALC64
// GPU HASH (second block only, first is midstate)
blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds);
#else
// GPU FULL HASH
blake256_cpu_hash_80(thr_id, throughput, pdata[19], targetHigh, crcsum, blakerounds);
#endif
if (foundNonce != MAXU)
if (foundNonce != MAXU)
{
{
uint32_t endiandata[20];
uint32_t vhashcpu[8];
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[6];
uint32_t Htarg = (uint32_t)targetHigh ;
for (int k=0; k < 19; k++)
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], foundNonce);
be32enc(&endiandata[19], foundNonce);
blake256hash(vhashcpu, endiandata, blakerounds);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg || cuda_swab32(vhashcpu[6]) <= Htarg /*&& fulltest(vhashcpu, ptarget)*/)
//applog(LOG_BLUE, "%08x %16llx", vhashcpu[6], targetHigh);
if (vhashcpu[6] <= Htarg /*&& fulltest(vhashcpu, ptarget)*/)
{
{
pdata[19] = foundNonce;
pdata[19] = foundNonce;
rc = 1;
rc = 1;
@ -338,6 +484,7 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
if (extra_results[0] != MAXU) {
if (extra_results[0] != MAXU) {
// Rare but possible if the throughput is big
// Rare but possible if the throughput is big
be32enc(&endiandata[19], extra_results[0]);
be32enc(&endiandata[19], extra_results[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
blake256hash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) {
if (vhashcpu[6] <= Htarg /* && fulltest(vhashcpu, ptarget) */) {
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
applog(LOG_NOTICE, "GPU found more than one result " CL_GRN "yippee!");
@ -368,6 +515,6 @@ extern "C" int scanhash_blake256(int thr_id, uint32_t *pdata, const uint32_t *pt
} while (!work_restart[thr_id].restart);
} while (!work_restart[thr_id].restart);
exit_scan:
exit_scan:
*hashes_done = pdata[19] - first_nonce + 1;
*hashes_done = pdata[19] - first_nonce + 1; // (+1 to prevent locks)
return rc;
return rc;
}
}