Browse Source

add neoscrypt based on djm34 work

indent, link --intensity, and some clean up

Tested speed on linux ~= 160kH/s on a 750Ti (Black Edition)

To be continued...
master
Tanguy Pruvot 9 years ago
parent
commit
65c1d787e7
  1. 1
      Makefile.am
  2. 7
      README.txt
  3. 12
      ccminer.cpp
  4. 3
      ccminer.vcxproj
  5. 4
      miner.h
  6. 83
      neoscrypt.cu
  7. 607
      neoscrypt/cuda_neoscrypt.cu
  8. 1109
      neoscrypt/cuda_vectors.h
  9. 992
      neoscrypt/neoscrypt.c
  10. 33
      neoscrypt/neoscrypt.h
  11. 3
      util.cpp

1
Makefile.am

@ -41,6 +41,7 @@ ccminer_SOURCES = elist.h miner.h compat.h \ @@ -41,6 +41,7 @@ ccminer_SOURCES = elist.h miner.h compat.h \
quark/cuda_bmw512.cu quark/cuda_quark_keccak512.cu \
quark/quarkcoin.cu quark/animecoin.cu \
quark/cuda_quark_compactionTest.cu \
neoscrypt.cu neoscrypt/neoscrypt.c neoscrypt/cuda_neoscrypt.cu \
cuda_nist5.cu pentablake.cu skein.cu skein2.cu zr5.cu \
sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \
sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \

7
README.txt

@ -1,5 +1,5 @@ @@ -1,5 +1,5 @@
ccMiner release 1.6.2-tpruvot (Apr 2015) - "Scrypt/N/Jane algos"
ccMiner release 1.6.3-tpruvot (May 2015) - "Neoscrypt"
---------------------------------------------------------------
***************************************************************
@ -37,6 +37,7 @@ Deep, Doom and Qubit @@ -37,6 +37,7 @@ Deep, Doom and Qubit
Keccak (Maxcoin)
Pentablake (Blake 512 x5)
1Coin Triple S
Neoscrypt (FeatherCoin)
Scrypt and Scrypt:N
Scrypt-Jane (Chacha)
Skein (Skein + SHA)
@ -76,6 +77,7 @@ its command line interface and options. @@ -76,6 +77,7 @@ its command line interface and options.
lyra2 use to mine Vertcoin
mjollnir use to mine Mjollnircoin
myr-gr use to mine Myriad-Groest
neoscrypt use to mine FeatherCoin
nist5 use to mine TalkCoin
penta use to mine Joincoin / Pentablake
pluck use to mine Supcoin
@ -211,6 +213,9 @@ features. @@ -211,6 +213,9 @@ features.
>>> RELEASE HISTORY <<<
Not released!! v1.6.3
Import Neoscrypt from djm34 work
Apr. 21th 2015 v1.6.2
Import Scrypt, Scrypt:N and Scrypt-jane from Cudaminer
Add the --time-limit command line parameter

12
ccminer.cpp

@ -98,6 +98,7 @@ enum sha_algos { @@ -98,6 +98,7 @@ enum sha_algos {
ALGO_LYRA2,
ALGO_MJOLLNIR, /* Hefty hash */
ALGO_MYR_GR,
ALGO_NEOSCRYPT,
ALGO_NIST5,
ALGO_PENTABLAKE,
ALGO_PLUCK,
@ -135,6 +136,7 @@ static const char *algo_names[] = { @@ -135,6 +136,7 @@ static const char *algo_names[] = {
"lyra2",
"mjollnir",
"myr-gr",
"neoscrypt",
"nist5",
"penta",
"pluck",
@ -273,6 +275,7 @@ Options:\n\ @@ -273,6 +275,7 @@ Options:\n\
lyra2 VertCoin\n\
mjollnir Mjollnircoin\n\
myr-gr Myriad-Groestl\n\
neoscrypt use to mine FeatherCoin\n\
nist5 NIST5 (TalkCoin)\n\
penta Pentablake hash (5x Blake 512)\n\
pluck SupCoin\n\
@ -537,7 +540,7 @@ static bool work_decode(const json_t *val, struct work *work) @@ -537,7 +540,7 @@ static bool work_decode(const json_t *val, struct work *work)
int adata_sz = ARRAY_SIZE(work->data), atarget_sz = ARRAY_SIZE(work->target);
int i;
if (opt_algo == ALGO_ZR5) {
if (opt_algo == ALGO_NEOSCRYPT || opt_algo == ALGO_ZR5) {
data_size = 80; adata_sz = 20;
}
@ -1241,6 +1244,7 @@ static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work) @@ -1241,6 +1244,7 @@ static void stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
switch (opt_algo) {
case ALGO_JACKPOT:
case ALGO_NEOSCRYPT:
case ALGO_PLUCK:
case ALGO_SCRYPT:
case ALGO_SCRYPT_JANE:
@ -1472,6 +1476,7 @@ static void *miner_thread(void *userdata) @@ -1472,6 +1476,7 @@ static void *miner_thread(void *userdata)
minmax = 0x400000;
break;
case ALGO_LYRA2:
case ALGO_NEOSCRYPT:
case ALGO_SCRYPT:
case ALGO_SCRYPT_JANE:
minmax = 0x100000;
@ -1599,6 +1604,11 @@ static void *miner_thread(void *userdata) @@ -1599,6 +1604,11 @@ static void *miner_thread(void *userdata)
max_nonce, &hashes_done);
break;
case ALGO_NEOSCRYPT:
rc = scanhash_neoscrypt(thr_id, work.data, work.target,
max_nonce, &hashes_done);
break;
case ALGO_NIST5:
rc = scanhash_nist5(thr_id, work.data, work.target,
max_nonce, &hashes_done);

3
ccminer.vcxproj

@ -265,6 +265,7 @@ @@ -265,6 +265,7 @@
<ClCompile Include="myriadgroestl.cpp" />
<ClCompile Include="lyra2\Lyra2.c" />
<ClCompile Include="lyra2\Sponge.c" />
<ClCompile Include="neoscrypt\neoscrypt.c" />
<ClCompile Include="sph\aes_helper.c" />
<ClCompile Include="sph\blake.c" />
<ClCompile Include="sph\bmw.c" />
@ -435,6 +436,8 @@ @@ -435,6 +436,8 @@
<AdditionalOptions Condition="'$(Configuration)'=='Release'">-Xptxas "-abi=yes" %(AdditionalOptions)</AdditionalOptions>
<AdditionalOptions Condition="'$(Configuration)'=='Debug'">-Xptxas "-abi=yes" %(AdditionalOptions)</AdditionalOptions>
</CudaCompile>
<CudaCompile Include="neoscrypt.cu" />
<CudaCompile Include="neoscrypt\cuda_neoscrypt.cu" />
<CudaCompile Include="pluck\pluck.cu" />
<CudaCompile Include="pluck\cuda_pluck.cu" />
<CudaCompile Include="quark\cuda_quark_groestl512.cu">

4
miner.h

@ -324,6 +324,9 @@ extern int scanhash_lyra2(int thr_id, uint32_t *pdata, @@ -324,6 +324,9 @@ extern int scanhash_lyra2(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done);
extern int scanhash_neoscrypt(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done);
extern int scanhash_nist5(int thr_id, uint32_t *pdata,
const uint32_t *ptarget, uint32_t max_nonce,
unsigned long *hashes_done);
@ -689,6 +692,7 @@ unsigned int jackpothash(void *state, const void *input); @@ -689,6 +692,7 @@ unsigned int jackpothash(void *state, const void *input);
void groestlhash(void *state, const void *input);
void lyra2_hash(void *state, const void *input);
void myriadhash(void *state, const void *input);
void neoscrypt(const uchar *password, uchar *output, uint profile);
void nist5hash(void *state, const void *input);
void pentablakehash(void *output, const void *input);
void pluckhash(uint32_t *hash, const uint32_t *data, uchar *hashbuffer, const int N);

83
neoscrypt.cu

@ -0,0 +1,83 @@ @@ -0,0 +1,83 @@
extern "C" {
#include "neoscrypt/neoscrypt.h"
}
#include "cuda_helper.h"
#include "miner.h"
static uint32_t *d_hash[MAX_GPUS] ;
extern void neoscrypt_setBlockTarget(uint32_t * data, const void *ptarget);
extern void neoscrypt_cpu_init(int thr_id, uint32_t threads, uint32_t* hash);
extern uint32_t neoscrypt_cpu_hash_k4(int stratum, int thr_id, uint32_t threads, uint32_t startNounce, int order);
#define SHIFT 130
int scanhash_neoscrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done)
{
const uint32_t first_nonce = pdata[19];
const int stratum = have_stratum;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff;
int intensity = is_windows() ? 18 : 19;
uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity);
throughput = throughput / 32; /* set for max intensity ~= 20 */
throughput = min(throughput, max_nonce - first_nonce + 1);
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 32 * SHIFT * sizeof(uint64_t) * throughput));
neoscrypt_cpu_init(thr_id, throughput, d_hash[thr_id]);
applog(LOG_INFO, "Using %d cuda threads", throughput);
init[thr_id] = true;
}
uint32_t endiandata[20];
if (stratum) {
for (int k = 0; k < 20; k++)
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
} else {
for (int k = 0; k < 20; k++)
endiandata[k] = pdata[k];
}
neoscrypt_setBlockTarget(endiandata,ptarget);
do {
uint32_t foundNonce = neoscrypt_cpu_hash_k4(stratum, thr_id, throughput, pdata[19], 0);
if (foundNonce != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash64[8];
*hashes_done = pdata[19] - first_nonce + 1;
if (stratum) {
be32enc(&endiandata[19], foundNonce);
} else {
endiandata[19] = foundNonce;
}
neoscrypt((uchar*) endiandata, (uchar*)vhash64, 0x80000620);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
pdata[19] = foundNonce;
return 1;
} else {
applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNonce);
}
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput)));
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}

607
neoscrypt/cuda_neoscrypt.cu

@ -0,0 +1,607 @@ @@ -0,0 +1,607 @@
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
#include "cuda_vectors.h"
__device__ uint4 * W;
uint32_t *d_NNonce[MAX_GPUS];
uint32_t *d_nnounce[MAX_GPUS];
__constant__ uint32_t pTarget[8];
__constant__ uint32_t key_init[16];
__constant__ uint32_t input_init[16];
__constant__ uint32_t c_data[80];
#define SALSA_SMALL_UNROLL 1
#define CHACHA_SMALL_UNROLL 1
#define BLAKE2S_BLOCK_SIZE 64U
#define BLAKE2S_OUT_SIZE 32U
#define BLAKE2S_KEY_SIZE 32U
#define BLOCK_SIZE 64U
#define FASTKDF_BUFFER_SIZE 256U
#define PASSWORD_LEN 80U
/// constants ///
static const __constant__ uint8 BLAKE2S_IV_Vec =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static const uint8 BLAKE2S_IV_Vechost =
{
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static const uint32_t BLAKE2S_SIGMA_host[10][16] =
{
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
};
__constant__ uint32_t BLAKE2S_SIGMA[10][16];
// Blake2S
#define BLAKE2S_BLOCK_SIZE 64U
#define BLAKE2S_OUT_SIZE 32U
#define BLAKE2S_KEY_SIZE 32U
#if __CUDA_ARCH__ >= 500
#define BLAKE_G(idx0, idx1, a, b, c, d, key) { \
idx = BLAKE2S_SIGMA[idx0][idx1]; a += key[idx]; \
a += b; d = __byte_perm(d^a,0, 0x1032); \
c += d; b = rotateR(b^c, 12); \
idx = BLAKE2S_SIGMA[idx0][idx1+1]; a += key[idx]; \
a += b; d = __byte_perm(d^a,0, 0x0321); \
c += d; b = rotateR(b^c, 7); \
}
#else
#define BLAKE_G(idx0, idx1, a, b, c, d, key) { \
idx = BLAKE2S_SIGMA[idx0][idx1]; a += key[idx]; \
a += b; d = rotate(d^a,16); \
c += d; b = rotateR(b^c, 12); \
idx = BLAKE2S_SIGMA[idx0][idx1+1]; a += key[idx]; \
a += b; d = rotateR(d^a,8); \
c += d; b = rotateR(b^c, 7); \
}
#endif
#define ROTL32(x, n) ((x) << (n)) | ((x) >> (32 - (n)))
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
#define BLAKE_Ghost(idx0, idx1, a, b, c, d, key) { \
idx = BLAKE2S_SIGMA_host[idx0][idx1]; a += key[idx]; \
a += b; d = ROTR32(d^a,16); \
c += d; b = ROTR32(b^c, 12); \
idx = BLAKE2S_SIGMA_host[idx0][idx1+1]; a += key[idx]; \
a += b; d = ROTR32(d^a,8); \
c += d; b = ROTR32(b^c, 7); \
}
static __forceinline__ __device__ void Blake2S(uint32_t * inout, const uint32_t * TheKey)
{
uint16 V;
uint32_t idx;
uint8 tmpblock;
V.hi = BLAKE2S_IV_Vec;
V.lo = BLAKE2S_IV_Vec;
V.lo.s0 ^= 0x01012020;
// Copy input block for later
tmpblock = V.lo;
V.hi.s4 ^= BLAKE2S_BLOCK_SIZE;
for (int x = 0; x < 10; ++x)
{
BLAKE_G(x, 0x00, V.lo.s0, V.lo.s4, V.hi.s0, V.hi.s4, TheKey);
BLAKE_G(x, 0x02, V.lo.s1, V.lo.s5, V.hi.s1, V.hi.s5, TheKey);
BLAKE_G(x, 0x04, V.lo.s2, V.lo.s6, V.hi.s2, V.hi.s6, TheKey);
BLAKE_G(x, 0x06, V.lo.s3, V.lo.s7, V.hi.s3, V.hi.s7, TheKey);
BLAKE_G(x, 0x08, V.lo.s0, V.lo.s5, V.hi.s2, V.hi.s7, TheKey);
BLAKE_G(x, 0x0A, V.lo.s1, V.lo.s6, V.hi.s3, V.hi.s4, TheKey);
BLAKE_G(x, 0x0C, V.lo.s2, V.lo.s7, V.hi.s0, V.hi.s5, TheKey);
BLAKE_G(x, 0x0E, V.lo.s3, V.lo.s4, V.hi.s1, V.hi.s6, TheKey);
}
V.lo ^= V.hi;
V.lo ^= tmpblock;
V.hi = BLAKE2S_IV_Vec;
tmpblock = V.lo;
V.hi.s4 ^= 128;
V.hi.s6 = ~V.hi.s6;
for (int x = 0; x < 10; ++x)
{
BLAKE_G(x, 0x00, V.lo.s0, V.lo.s4, V.hi.s0, V.hi.s4, inout);
BLAKE_G(x, 0x02, V.lo.s1, V.lo.s5, V.hi.s1, V.hi.s5, inout);
BLAKE_G(x, 0x04, V.lo.s2, V.lo.s6, V.hi.s2, V.hi.s6, inout);
BLAKE_G(x, 0x06, V.lo.s3, V.lo.s7, V.hi.s3, V.hi.s7, inout);
BLAKE_G(x, 0x08, V.lo.s0, V.lo.s5, V.hi.s2, V.hi.s7, inout);
BLAKE_G(x, 0x0A, V.lo.s1, V.lo.s6, V.hi.s3, V.hi.s4, inout);
BLAKE_G(x, 0x0C, V.lo.s2, V.lo.s7, V.hi.s0, V.hi.s5, inout);
BLAKE_G(x, 0x0E, V.lo.s3, V.lo.s4, V.hi.s1, V.hi.s6, inout);
}
V.lo ^= V.hi ^ tmpblock;
((uint8*)inout)[0]=V.lo;
}
static __forceinline__ __host__ void Blake2Shost(uint32_t * inout, const uint32_t * inkey)
{
uint16 V;
uint32_t idx;
uint8 tmpblock;
V.hi = BLAKE2S_IV_Vechost;
V.lo = BLAKE2S_IV_Vechost;
V.lo.s0 ^= 0x01012020;
// Copy input block for later
tmpblock = V.lo;
V.hi.s4 ^= BLAKE2S_BLOCK_SIZE;
for (int x = 0; x < 10; ++x)
{
BLAKE_Ghost(x, 0x00, V.lo.s0, V.lo.s4, V.hi.s0, V.hi.s4, inkey);
BLAKE_Ghost(x, 0x02, V.lo.s1, V.lo.s5, V.hi.s1, V.hi.s5, inkey);
BLAKE_Ghost(x, 0x04, V.lo.s2, V.lo.s6, V.hi.s2, V.hi.s6, inkey);
BLAKE_Ghost(x, 0x06, V.lo.s3, V.lo.s7, V.hi.s3, V.hi.s7, inkey);
BLAKE_Ghost(x, 0x08, V.lo.s0, V.lo.s5, V.hi.s2, V.hi.s7, inkey);
BLAKE_Ghost(x, 0x0A, V.lo.s1, V.lo.s6, V.hi.s3, V.hi.s4, inkey);
BLAKE_Ghost(x, 0x0C, V.lo.s2, V.lo.s7, V.hi.s0, V.hi.s5, inkey);
BLAKE_Ghost(x, 0x0E, V.lo.s3, V.lo.s4, V.hi.s1, V.hi.s6, inkey);
}
V.lo ^= V.hi;
V.lo ^= tmpblock;
V.hi = BLAKE2S_IV_Vechost;
tmpblock = V.lo;
V.hi.s4 ^= 128;
V.hi.s6 = ~V.hi.s6;
for (int x = 0; x < 10; ++x)
{
BLAKE_Ghost(x, 0x00, V.lo.s0, V.lo.s4, V.hi.s0, V.hi.s4, inout);
BLAKE_Ghost(x, 0x02, V.lo.s1, V.lo.s5, V.hi.s1, V.hi.s5, inout);
BLAKE_Ghost(x, 0x04, V.lo.s2, V.lo.s6, V.hi.s2, V.hi.s6, inout);
BLAKE_Ghost(x, 0x06, V.lo.s3, V.lo.s7, V.hi.s3, V.hi.s7, inout);
BLAKE_Ghost(x, 0x08, V.lo.s0, V.lo.s5, V.hi.s2, V.hi.s7, inout);
BLAKE_Ghost(x, 0x0A, V.lo.s1, V.lo.s6, V.hi.s3, V.hi.s4, inout);
BLAKE_Ghost(x, 0x0C, V.lo.s2, V.lo.s7, V.hi.s0, V.hi.s5, inout);
BLAKE_Ghost(x, 0x0E, V.lo.s3, V.lo.s4, V.hi.s1, V.hi.s6, inout);
}
V.lo ^= V.hi ^ tmpblock;
((uint8*)inout)[0] = V.lo;
}
static __forceinline__ __device__ void fastkdf256(const uint32_t* password, uint8_t* output)
{
uint8_t bufidx = 0;
uchar4 bufhelper;
uint8_t A[320],B[288];
((uintx64*)A)[0] = ((uintx64*)password)[0];
((uint816 *)A)[4] = ((uint816 *)password)[0];
((uintx64*)B)[0] = ((uintx64*)password)[0];
((uint48 *)B)[8] = ((uint48 *)password)[0];
uint32_t input[BLAKE2S_BLOCK_SIZE/4]; uint32_t key[BLAKE2S_BLOCK_SIZE / 4] = { 0 };
((uint816*)input)[0] = ((uint816*)input_init)[0];
((uint48*)key)[0] = ((uint48*)key_init)[0];
for (int i = 0; i < 32; ++i)
{
bufhelper = ((uchar4*)input)[0];
for (int x = 1; x < BLAKE2S_OUT_SIZE / 4; ++x)
bufhelper += ((uchar4*)input)[x];
bufidx = bufhelper.x + bufhelper.y + bufhelper.z + bufhelper.w;
int qbuf = bufidx/4;
int rbuf = bufidx&3;
int bitbuf = rbuf << 3;
uint32_t shifted[9];
shift256R2(shifted, ((uint8*)input)[0], bitbuf);
for (int k = 0; k < 9; ++k) {
((uint32_t *)B)[k + qbuf] ^= ((uint32_t *)shifted)[k];
}
if (bufidx < BLAKE2S_KEY_SIZE) {((uint8*)B)[8] = ((uint8*)B)[0];}
else if (bufidx > FASTKDF_BUFFER_SIZE-BLAKE2S_OUT_SIZE) {((uint8*)B)[0] = ((uint8*)B)[8];}
if (i<31) {
for (int k = 0; k <BLAKE2S_BLOCK_SIZE / 4; k++) {
((uchar4*)(input))[k] = make_uchar4(
(A + bufidx)[4 * k], (A + bufidx)[4 * k + 1],
(A + bufidx)[4 * k + 2], (A + bufidx)[4 * k + 3]
);
}
for (int k = 0; k <BLAKE2S_KEY_SIZE / 4; k++) {
((uchar4*)(key))[k] = make_uchar4(
(B + bufidx)[4 * k], (B + bufidx)[4 * k + 1],
(B + bufidx)[4 * k + 2], (B + bufidx)[4 * k + 3]
);
}
Blake2S((uint32_t*)input, key);
}
}
int left = FASTKDF_BUFFER_SIZE - bufidx;
int qleft =left/4;
int rleft =left&3;
for (int k = 0; k < qleft; ++k) {
((uchar4*)output)[k] = make_uchar4(
(B + bufidx)[4 * k], (B + bufidx)[4 * k + 1],
(B + bufidx)[4 * k + 2], (B + bufidx)[4 * k + 3]
) ^ ((uchar4*)A)[k];
}
for (int i = 4*qleft; i < 4*qleft+rleft; ++i) {
output[i] = (B + bufidx)[i] ^ A[i];
}
for (int i = qleft*4+rleft; i < (qleft+1)*4; ++i) {
((uint8_t *)output)[i] = ((uint8_t *)B)[i - left] ^ ((uint8_t *)A)[i];
}
for (int i = qleft+1; i < FASTKDF_BUFFER_SIZE/4; ++i) {
((uchar4 *)output)[i] = make_uchar4(B[4*i - left],B[4*i+1-left],
B[4*i+2-left],B[4*i+3-left]) ^ ((uchar4 *)A)[i];
}
}
static __forceinline__ __device__ void fastkdf32( const uint32_t * password, const uint32_t * salt, uint32_t * output)
{
uint8_t bufidx = 0;
uchar4 bufhelper;
uint8_t A[320];
uint8_t B[288];
// Initialize the password buffer
((uintx64*)A)[0] = ((uintx64*)password)[0];
((uint816*)A)[4] = ((uint816*)password)[0];
((uintx64*)B)[0] = ((uintx64*)salt)[0];
((uintx64*)B)[1] = ((uintx64*)salt)[0];
uint32_t input[BLAKE2S_BLOCK_SIZE/4];
uint32_t key[BLAKE2S_BLOCK_SIZE/4] = { 0 };
((uint816*)input)[0] = ((uint816*)password)[0];
((uint48*)key)[0] = ((uint48*)salt)[0];
for (int i = 0; i < 32; ++i)
{
Blake2S((uint32_t*)input, key);
bufidx = 0;
bufhelper = ((uchar4*)input)[0];
for (int x = 1; x < BLAKE2S_OUT_SIZE / 4; ++x) { bufhelper += ((uchar4*)input)[x]; }
bufidx = bufhelper.x + bufhelper.y + bufhelper.z + bufhelper.w;
int qbuf = bufidx / 4;
int rbuf = bufidx & 3;
int bitbuf = rbuf << 3;
uint32_t shifted[9];
shift256R2(shifted, ((uint8*)input)[0], bitbuf);
for (int k = 0; k < 9; ++k) {
((uint32_t *)B)[k + qbuf] ^= ((uint32_t *)shifted)[k];
}
if (i<31){
if (bufidx < BLAKE2S_KEY_SIZE) {((uint8*)B)[8] = ((uint8*)B)[0];}
else if (bufidx > FASTKDF_BUFFER_SIZE - BLAKE2S_OUT_SIZE) {((uint8*)B)[0] = ((uint8*)B)[8];}
// MyUnion Test;
for (uint8_t k = 0; k <BLAKE2S_BLOCK_SIZE/4 ; k++) {
((uchar4*)(input))[k] =
make_uchar4((A + bufidx)[4 * k], (A + bufidx)[4 * k + 1], (A + bufidx)[4 * k + 2], (A + bufidx)[4 * k + 3]);
}
for (uint8_t k = 0; k <BLAKE2S_KEY_SIZE / 4; k++) {
((uchar4*)(key))[k] =
make_uchar4((B + bufidx)[4 * k], (B + bufidx)[4 * k + 1], (B + bufidx)[4 * k + 2], (B + bufidx)[4 * k + 3]);
}
}
}
uchar4 unfucked[1];
unfucked[0] = make_uchar4(B[28 + bufidx], B[29 + bufidx],B[30 + bufidx], B[31 + bufidx]);
((uint32_t*)output)[7] = ((uint32_t*)unfucked)[0] ^ ((uint32_t*)A)[7];
}
#define SALSA(a,b,c,d) { \
t =a+d; b^=rotate(t, 7); \
t =b+a; c^=rotate(t, 9); \
t =c+b; d^=rotate(t, 13); \
t =d+c; a^=rotate(t, 18); \
}
#define SALSA_CORE(state) { \
SALSA(state.s0,state.s4,state.s8,state.sc); \
SALSA(state.s5,state.s9,state.sd,state.s1); \
SALSA(state.sa,state.se,state.s2,state.s6); \
SALSA(state.sf,state.s3,state.s7,state.sb); \
SALSA(state.s0,state.s1,state.s2,state.s3); \
SALSA(state.s5,state.s6,state.s7,state.s4); \
SALSA(state.sa,state.sb,state.s8,state.s9); \
SALSA(state.sf,state.sc,state.sd,state.se); \
}
#if __CUDA_ARCH__ >=500
#define CHACHA_STEP(a,b,c,d) { \
a += b; d = __byte_perm(d^a,0,0x1032); \
c += d; b = rotate(b^c, 12); \
a += b; d = __byte_perm(d^a,0,0x2103); \
c += d; b = rotate(b^c, 7); \
}
#else
#define CHACHA_STEP(a,b,c,d) { \
a += b; d = rotate(d^a,16); \
c += d; b = rotate(b^c, 12); \
a += b; d = rotate(d^a,8); \
c += d; b = rotate(b^c, 7); \
}
#endif
#define CHACHA_CORE_PARALLEL(state) { \
CHACHA_STEP(state.lo.s0, state.lo.s4, state.hi.s0, state.hi.s4); \
CHACHA_STEP(state.lo.s1, state.lo.s5, state.hi.s1, state.hi.s5); \
CHACHA_STEP(state.lo.s2, state.lo.s6, state.hi.s2, state.hi.s6); \
CHACHA_STEP(state.lo.s3, state.lo.s7, state.hi.s3, state.hi.s7); \
CHACHA_STEP(state.lo.s0, state.lo.s5, state.hi.s2, state.hi.s7); \
CHACHA_STEP(state.lo.s1, state.lo.s6, state.hi.s3, state.hi.s4); \
CHACHA_STEP(state.lo.s2, state.lo.s7, state.hi.s0, state.hi.s5); \
CHACHA_STEP(state.lo.s3, state.lo.s4, state.hi.s1, state.hi.s6); \
}
static __forceinline__ __device__ uint16 salsa_small_scalar_rnd(const uint16 &X)
{
uint16 state = X;
uint32_t t;
for (int i = 0; i < 10; ++i) { SALSA_CORE(state);}
return(X + state);
}
static __device__ __forceinline__ uint16 chacha_small_parallel_rnd(const uint16 &X)
{
uint16 st = X;
for (int i = 0; i < 10; ++i) {CHACHA_CORE_PARALLEL(st);}
return(X + st);
}
static __device__ __forceinline__ void neoscrypt_chacha(uint16 *XV)
{
XV[0] ^= XV[3];
uint16 temp;
XV[0] = chacha_small_parallel_rnd(XV[0]); XV[1] ^= XV[0];
temp = chacha_small_parallel_rnd(XV[1]); XV[2] ^= temp;
XV[1] = chacha_small_parallel_rnd(XV[2]); XV[3] ^= XV[1];
XV[3] = chacha_small_parallel_rnd(XV[3]);
XV[2] = temp;
}
static __device__ __forceinline__ void neoscrypt_salsa(uint16 *XV)
{
XV[0] ^= XV[3];
uint16 temp;
XV[0] = salsa_small_scalar_rnd(XV[0]); XV[1] ^= XV[0];
temp = salsa_small_scalar_rnd(XV[1]); XV[2] ^= temp;
XV[1] = salsa_small_scalar_rnd(XV[2]); XV[3] ^= XV[1];
XV[3] = salsa_small_scalar_rnd(XV[3]);
XV[2] = temp;
}
#define SHIFT 130
__global__ __launch_bounds__(128, 1)
void neoscrypt_gpu_hash_k0(int stratum, uint32_t threads, uint32_t startNonce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
uint32_t shift = SHIFT * 16 * thread;
// if (thread < threads)
{
uint32_t data[80];
uint16 X[4];
const uint32_t nonce = startNonce + thread;
for (int i = 0; i<20; i++) {
((uint4*)data)[i] = ((uint4 *)c_data)[i];
} //ld.local.v4
data[19] = (stratum) ? cuda_swab32(nonce) : nonce; //freaking morons !!!
data[39] = data[19];
data[59] = data[19];
fastkdf256(data, (uint8_t*)X);
((uintx64 *)(W + shift))[0] = ((uintx64 *)X)[0];
// ((ulonglong16 *)(W + shift))[0] = ((ulonglong16 *)X)[0];
}
}
__global__ __launch_bounds__(128, 1)
void neoscrypt_gpu_hash_k01(uint32_t threads, uint32_t startNonce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
uint32_t shift = SHIFT * 16 * thread;
// if (thread < threads)
{
uint16 X[4];
((uintx64 *)X)[0]= __ldg32(&(W + shift)[0]);
//#pragma unroll
for (int i = 0; i < 128; ++i)
{
neoscrypt_chacha(X);
((ulonglong16 *)(W + shift))[i+1] = ((ulonglong16 *)X)[0];
// ((uintx64 *)(W + shift))[i + 1] = ((uintx64 *)X)[0];
}
}
}
__global__ __launch_bounds__(128, 1)
void neoscrypt_gpu_hash_k2(uint32_t threads, uint32_t startNonce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
uint32_t shift = SHIFT * 16 * thread;
// if (thread < threads)
{
uint16 X[4];
((uintx64 *)X)[0] = __ldg32(&(W + shift)[2048]);
for (int t = 0; t < 128; t++)
{
int idx = X[3].lo.s0 & 0x7F;
((uintx64 *)X)[0] ^= __ldg32(&(W + shift)[idx << 4]);
neoscrypt_chacha(X);
}
((uintx64 *)(W + shift))[129] = ((uintx64*)X)[0]; // best checked
}
}
__global__ __launch_bounds__(128, 1)
void neoscrypt_gpu_hash_k3(uint32_t threads, uint32_t startNonce)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
// if (thread < threads)
{
uint32_t shift = SHIFT * 16 * thread;
uint16 Z[4];
((uintx64*)Z)[0] = __ldg32(&(W + shift)[0]);
//#pragma unroll
for (int i = 0; i < 128; ++i) {
neoscrypt_salsa(Z);
((ulonglong16 *)(W + shift))[i+1] = ((ulonglong16 *)Z)[0];
// ((uintx64 *)(W + shift))[i + 1] = ((uintx64 *)Z)[0];
}
}
}
__global__ __launch_bounds__(128, 1)
void neoscrypt_gpu_hash_k4(int stratum, uint32_t threads, uint32_t startNonce, uint32_t *nonceVector)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
// if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t shift = SHIFT * 16 * thread;
uint16 Z[4];
uint32_t outbuf[8];
uint32_t data[80];
for (int i=0; i<20; i++) {
((uint4*)data)[i] = ((uint4 *)c_data)[i];
}
data[19] = (stratum) ? cuda_swab32(nonce) : nonce;
data[39] = data[19];
data[59] = data[19];
((uintx64 *)Z)[0] = __ldg32(&(W + shift)[2048]);
for (int t = 0; t < 128; t++)
{
int idx = Z[3].lo.s0 & 0x7F;
((uintx64 *)Z)[0] ^= __ldg32(&(W + shift)[idx << 4]);
neoscrypt_salsa(Z);
}
((uintx64 *)Z)[0] ^= __ldg32(&(W + shift)[2064]);
fastkdf32(data, (uint32_t*)Z, outbuf);
if (outbuf[7] <= pTarget[7]) {
uint32_t tmp = atomicExch(&nonceVector[0], nonce);
}
}
}
void neoscrypt_cpu_init(int thr_id, uint32_t threads, uint32_t *hash)
{
cudaMemcpyToSymbol(BLAKE2S_SIGMA, BLAKE2S_SIGMA_host, sizeof(BLAKE2S_SIGMA_host), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(W, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice);
cudaMalloc(&d_NNonce[thr_id], sizeof(uint32_t));
}
__host__
uint32_t neoscrypt_cpu_hash_k4(int stratum, int thr_id, uint32_t threads, uint32_t startNounce, int order)
{
uint32_t result[MAX_GPUS] = { 0xffffffff };
cudaMemset(d_NNonce[thr_id], 0xff, sizeof(uint32_t));
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
// neoscrypt_gpu_hash_orig << <grid, block >> >(threads, startNounce, d_NNonce[thr_id]);
neoscrypt_gpu_hash_k0 << <grid, block >> >(stratum,threads, startNounce);
neoscrypt_gpu_hash_k01 << <grid, block >> >(threads, startNounce);
neoscrypt_gpu_hash_k2 << <grid, block >> >(threads, startNounce);
neoscrypt_gpu_hash_k3 << <grid, block >> >(threads, startNounce);
neoscrypt_gpu_hash_k4 << <grid, block >> >(stratum,threads, startNounce, d_NNonce[thr_id]);
MyStreamSynchronize(NULL, order, thr_id);
cudaMemcpy(&result[thr_id], d_NNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
return result[thr_id];
}
__host__
void neoscrypt_setBlockTarget(uint32_t* pdata, const void *target)
{
unsigned char PaddedMessage[80*4]; //bring balance to the force
uint32_t input[16], key[16] = { 0 };
memcpy(PaddedMessage, pdata, 80);
memcpy(PaddedMessage + 80, pdata, 80);
memcpy(PaddedMessage + 160, pdata, 80);
memcpy(PaddedMessage + 240, pdata, 80);
((uint16*)input)[0] = ((uint16*)pdata)[0];
((uint8*)key)[0] = ((uint8*)pdata)[0];
// for (int i = 0; i<10; i++) { printf(" pdata/input %d %08x %08x \n",i,pdata[2*i],pdata[2*i+1]); }
Blake2Shost(input,key);
cudaMemcpyToSymbol(pTarget, target, 8 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(input_init, input, 16 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(key_init, key, 16 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(c_data, PaddedMessage, 40 * sizeof(uint64_t), 0, cudaMemcpyHostToDevice);
}

1109
neoscrypt/cuda_vectors.h

File diff suppressed because it is too large Load Diff

992
neoscrypt/neoscrypt.c

@ -0,0 +1,992 @@ @@ -0,0 +1,992 @@
/*
* Copyright (c) 2009 Colin Percival, 2011 ArtForz
* Copyright (c) 2012 Andrew Moon (floodyberry)
* Copyright (c) 2012 Samuel Neves <sneves@dei.uc.pt>
* Copyright (c) 2014 John Doering <ghostlander@phoenixcoin.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include "neoscrypt.h"
#if (WINDOWS)
/* sizeof(unsigned long) = 4 for MinGW64 */
typedef unsigned long long ulong;
#else
typedef unsigned long ulong;
#endif
typedef unsigned int uint;
typedef unsigned char uchar;
typedef unsigned int bool;
#define MIN(a, b) ((a) < (b) ? a : b)
#define MAX(a, b) ((a) > (b) ? a : b)
/* SHA-256 */
static const uint32_t sha256_constants[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
#define Ch(x,y,z) (z ^ (x & (y ^ z)))
#define Maj(x,y,z) (((x | y) & z) | (x & y))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define G0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ (x >> 3))
#define G1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ (x >> 10))
#define W0(in,i) (U8TO32_BE(&in[i * 4]))
#define W1(i) (G1(w[i - 2]) + w[i - 7] + G0(w[i - 15]) + w[i - 16])
#define STEP(i) \
t1 = S0(r[0]) + Maj(r[0], r[1], r[2]); \
t0 = r[7] + S1(r[4]) + Ch(r[4], r[5], r[6]) + sha256_constants[i] + w[i]; \
r[7] = r[6]; \
r[6] = r[5]; \
r[5] = r[4]; \
r[4] = r[3] + t0; \
r[3] = r[2]; \
r[2] = r[1]; \
r[1] = r[0]; \
r[0] = t0 + t1;
typedef struct sha256_hash_state_t {
uint32_t H[8];
uint64_t T;
uint32_t leftover;
uint8_t buffer[SCRYPT_HASH_BLOCK_SIZE];
} sha256_hash_state;
static void sha256_blocks(sha256_hash_state *S, const uint8_t *in, size_t blocks)
{
uint32_t r[8], w[64], t0, t1;
size_t i;
for (i = 0; i < 8; i++)
r[i] = S->H[i];
while (blocks--) {
for (i = 0U; i < 16; i++) {
w[i] = W0(in, i);
}
for (i = 16; i < 64; i++) {
w[i] = W1(i);
}
for (i = 0U; i < 64; i++) {
STEP(i);
}
for (i = 0U; i < 8U; i++) {
r[i] += S->H[i];
S->H[i] = r[i];
}
S->T += SCRYPT_HASH_BLOCK_SIZE * 8;
in += SCRYPT_HASH_BLOCK_SIZE;
}
}
static void neoscrypt_hash_init_sha256(sha256_hash_state *S)
{
S->H[0] = 0x6a09e667;
S->H[1] = 0xbb67ae85;
S->H[2] = 0x3c6ef372;
S->H[3] = 0xa54ff53a;
S->H[4] = 0x510e527f;
S->H[5] = 0x9b05688c;
S->H[6] = 0x1f83d9ab;
S->H[7] = 0x5be0cd19;
S->T = 0;
S->leftover = 0;
}
static void neoscrypt_hash_update_sha256(sha256_hash_state *S, const uint8_t *in, size_t inlen)
{
size_t blocks, want;
/* handle the previous data */
if (S->leftover) {
want = (SCRYPT_HASH_BLOCK_SIZE - S->leftover);
want = (want < inlen) ? want : inlen;
memcpy(S->buffer + S->leftover, in, want);
S->leftover += (uint32_t)want;
if (S->leftover < SCRYPT_HASH_BLOCK_SIZE)
return;
in += want;
inlen -= want;
sha256_blocks(S, S->buffer, 1);
}
/* handle the current data */
blocks = (inlen & ~(SCRYPT_HASH_BLOCK_SIZE - 1));
S->leftover = (uint32_t)(inlen - blocks);
if (blocks) {
sha256_blocks(S, in, blocks / SCRYPT_HASH_BLOCK_SIZE);
in += blocks;
}
/* handle leftover data */
if (S->leftover)
memcpy(S->buffer, in, S->leftover);
}
static void neoscrypt_hash_finish_sha256(sha256_hash_state *S, uint8_t *hash)
{
uint64_t t = S->T + (S->leftover * 8);
S->buffer[S->leftover] = 0x80;
if (S->leftover <= 55) {
memset(S->buffer + S->leftover + 1, 0, 55 - S->leftover);
} else {
memset(S->buffer + S->leftover + 1, 0, 63 - S->leftover);
sha256_blocks(S, S->buffer, 1);
memset(S->buffer, 0, 56);
}
U64TO8_BE(S->buffer + 56, t);
sha256_blocks(S, S->buffer, 1);
U32TO8_BE(&hash[ 0], S->H[0]);
U32TO8_BE(&hash[ 4], S->H[1]);
U32TO8_BE(&hash[ 8], S->H[2]);
U32TO8_BE(&hash[12], S->H[3]);
U32TO8_BE(&hash[16], S->H[4]);
U32TO8_BE(&hash[20], S->H[5]);
U32TO8_BE(&hash[24], S->H[6]);
U32TO8_BE(&hash[28], S->H[7]);
}
static void neoscrypt_hash_sha256(hash_digest hash, const uint8_t *m, size_t mlen)
{
sha256_hash_state st;
neoscrypt_hash_init_sha256(&st);
neoscrypt_hash_update_sha256(&st, m, mlen);
neoscrypt_hash_finish_sha256(&st, hash);
}
/* HMAC for SHA-256 */
typedef struct sha256_hmac_state_t {
sha256_hash_state inner, outer;
} sha256_hmac_state;
static void neoscrypt_hmac_init_sha256(sha256_hmac_state *st, const uint8_t *key, size_t keylen)
{
uint8_t pad[SCRYPT_HASH_BLOCK_SIZE] = {0};
size_t i;
neoscrypt_hash_init_sha256(&st->inner);
neoscrypt_hash_init_sha256(&st->outer);
if (keylen <= SCRYPT_HASH_BLOCK_SIZE) {
/* use the key directly if it's <= blocksize bytes */
memcpy(pad, key, keylen);
} else {
/* if it's > blocksize bytes, hash it */
neoscrypt_hash_sha256(pad, key, keylen);
}
/* inner = (key ^ 0x36) */
/* h(inner || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= 0x36;
neoscrypt_hash_update_sha256(&st->inner, pad, SCRYPT_HASH_BLOCK_SIZE);
/* outer = (key ^ 0x5c) */
/* h(outer || ...) */
for (i = 0; i < SCRYPT_HASH_BLOCK_SIZE; i++)
pad[i] ^= (0x5c ^ 0x36);
neoscrypt_hash_update_sha256(&st->outer, pad, SCRYPT_HASH_BLOCK_SIZE);
}
static void neoscrypt_hmac_update_sha256(sha256_hmac_state *st, const uint8_t *m, size_t mlen)
{
/* h(inner || m...) */
neoscrypt_hash_update_sha256(&st->inner, m, mlen);
}
static void neoscrypt_hmac_finish_sha256(sha256_hmac_state *st, hash_digest mac)
{
/* h(inner || m) */
hash_digest innerhash;
neoscrypt_hash_finish_sha256(&st->inner, innerhash);
/* h(outer || h(inner || m)) */
neoscrypt_hash_update_sha256(&st->outer, innerhash, sizeof(innerhash));
neoscrypt_hash_finish_sha256(&st->outer, mac);
}
/* PBKDF2 for SHA-256 */
static void neoscrypt_pbkdf2_sha256(const uint8_t *password, size_t password_len,
const uint8_t *salt, size_t salt_len, uint64_t N, uint8_t *output, size_t output_len)
{
sha256_hmac_state hmac_pw, hmac_pw_salt, work;
hash_digest ti, u;
uint8_t be[4];
uint32_t i, j, k, blocks;
/* bytes must be <= (0xffffffff - (SCRYPT_HASH_DIGEST_SIZE - 1)), which they will always be under scrypt */
/* hmac(password, ...) */
neoscrypt_hmac_init_sha256(&hmac_pw, password, password_len);
/* hmac(password, salt...) */
hmac_pw_salt = hmac_pw;
neoscrypt_hmac_update_sha256(&hmac_pw_salt, salt, salt_len);
blocks = ((uint32_t)output_len + (SCRYPT_HASH_DIGEST_SIZE - 1)) / SCRYPT_HASH_DIGEST_SIZE;
for(i = 1; i <= blocks; i++) {
/* U1 = hmac(password, salt || be(i)) */
U32TO8_BE(be, i);
work = hmac_pw_salt;
neoscrypt_hmac_update_sha256(&work, be, 4);
neoscrypt_hmac_finish_sha256(&work, ti);
memcpy(u, ti, sizeof(u));
/* T[i] = U1 ^ U2 ^ U3... */
for(j = 0; j < N - 1; j++) {
/* UX = hmac(password, U{X-1}) */
work = hmac_pw;
neoscrypt_hmac_update_sha256(&work, u, SCRYPT_HASH_DIGEST_SIZE);
neoscrypt_hmac_finish_sha256(&work, u);
/* T[i] ^= UX */
for(k = 0; k < sizeof(u); k++)
ti[k] ^= u[k];
}
memcpy(output, ti, (output_len > SCRYPT_HASH_DIGEST_SIZE) ? SCRYPT_HASH_DIGEST_SIZE : output_len);
output += SCRYPT_HASH_DIGEST_SIZE;
output_len -= SCRYPT_HASH_DIGEST_SIZE;
}
}
/* NeoScrypt */
#if defined(ASM)
extern void neoscrypt_salsa(uint *X, uint rounds);
extern void neoscrypt_salsa_tangle(uint *X, uint count);
extern void neoscrypt_chacha(uint *X, uint rounds);
extern void neoscrypt_blkcpy(void *dstp, const void *srcp, uint len);
extern void neoscrypt_blkswp(void *blkAp, void *blkBp, uint len);
extern void neoscrypt_blkxor(void *dstp, const void *srcp, uint len);
#else
/* Salsa20, rounds must be a multiple of 2 */
static void neoscrypt_salsa(uint *X, uint rounds)
{
uint x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, t;
x0 = X[0]; x1 = X[1]; x2 = X[2]; x3 = X[3];
x4 = X[4]; x5 = X[5]; x6 = X[6]; x7 = X[7];
x8 = X[8]; x9 = X[9]; x10 = X[10]; x11 = X[11];
x12 = X[12]; x13 = X[13]; x14 = X[14]; x15 = X[15];
#define quarter(a, b, c, d) \
t = a + d; t = ROTL32(t, 7); b ^= t; \
t = b + a; t = ROTL32(t, 9); c ^= t; \
t = c + b; t = ROTL32(t, 13); d ^= t; \
t = d + c; t = ROTL32(t, 18); a ^= t;
for(; rounds; rounds -= 2) {
quarter( x0, x4, x8, x12);
quarter( x5, x9, x13, x1);
quarter(x10, x14, x2, x6);
quarter(x15, x3, x7, x11);
quarter( x0, x1, x2, x3);
quarter( x5, x6, x7, x4);
quarter(x10, x11, x8, x9);
quarter(x15, x12, x13, x14);
}
X[0] += x0; X[1] += x1; X[2] += x2; X[3] += x3;
X[4] += x4; X[5] += x5; X[6] += x6; X[7] += x7;
X[8] += x8; X[9] += x9; X[10] += x10; X[11] += x11;
X[12] += x12; X[13] += x13; X[14] += x14; X[15] += x15;
#undef quarter
}
/* ChaCha20, rounds must be a multiple of 2 */
static void neoscrypt_chacha(uint *X, uint rounds)
{
uint x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, t;
x0 = X[0]; x1 = X[1]; x2 = X[2]; x3 = X[3];
x4 = X[4]; x5 = X[5]; x6 = X[6]; x7 = X[7];
x8 = X[8]; x9 = X[9]; x10 = X[10]; x11 = X[11];
x12 = X[12]; x13 = X[13]; x14 = X[14]; x15 = X[15];
#define quarter(a,b,c,d) \
a += b; t = d ^ a; d = ROTL32(t, 16); \
c += d; t = b ^ c; b = ROTL32(t, 12); \
a += b; t = d ^ a; d = ROTL32(t, 8); \
c += d; t = b ^ c; b = ROTL32(t, 7);
for(; rounds; rounds -= 2) {
quarter( x0, x4, x8, x12);
quarter( x1, x5, x9, x13);
quarter( x2, x6, x10, x14);
quarter( x3, x7, x11, x15);
quarter( x0, x5, x10, x15);
quarter( x1, x6, x11, x12);
quarter( x2, x7, x8, x13);
quarter( x3, x4, x9, x14);
}
X[0] += x0; X[1] += x1; X[2] += x2; X[3] += x3;
X[4] += x4; X[5] += x5; X[6] += x6; X[7] += x7;
X[8] += x8; X[9] += x9; X[10] += x10; X[11] += x11;
X[12] += x12; X[13] += x13; X[14] += x14; X[15] += x15;
#undef quarter
}
/* Fast 32-bit / 64-bit memcpy();
* len must be a multiple of 32 bytes */
static void neoscrypt_blkcpy(void *dstp, const void *srcp, uint len)
{
ulong *dst = (ulong *) dstp;
ulong *src = (ulong *) srcp;
uint i;
for(i = 0; i < (len / sizeof(ulong)); i += 4) {
dst[i] = src[i];
dst[i + 1] = src[i + 1];
dst[i + 2] = src[i + 2];
dst[i + 3] = src[i + 3];
}
}
/* Fast 32-bit / 64-bit block swapper;
* len must be a multiple of 32 bytes */
static void neoscrypt_blkswp(void *blkAp, void *blkBp, uint len)
{
ulong *blkA = (ulong *) blkAp;
ulong *blkB = (ulong *) blkBp;
register ulong t0, t1, t2, t3;
uint i;
for(i = 0; i < (len / sizeof(ulong)); i += 4) {
t0 = blkA[i];
t1 = blkA[i + 1];
t2 = blkA[i + 2];
t3 = blkA[i + 3];
blkA[i] = blkB[i];
blkA[i + 1] = blkB[i + 1];
blkA[i + 2] = blkB[i + 2];
blkA[i + 3] = blkB[i + 3];
blkB[i] = t0;
blkB[i + 1] = t1;
blkB[i + 2] = t2;
blkB[i + 3] = t3;
}
}
/* Fast 32-bit / 64-bit block XOR engine;
* len must be a multiple of 32 bytes */
static void neoscrypt_blkxor(void *dstp, const void *srcp, uint len)
{
ulong *dst = (ulong *) dstp;
ulong *src = (ulong *) srcp;
uint i;
for (i = 0; i < (len / sizeof(ulong)); i += 4) {
dst[i] ^= src[i];
dst[i + 1] ^= src[i + 1];
dst[i + 2] ^= src[i + 2];
dst[i + 3] ^= src[i + 3];
}
}
#endif
/* 32-bit / 64-bit optimised memcpy() */
static void neoscrypt_copy(void *dstp, const void *srcp, uint len)
{
ulong *dst = (ulong *) dstp;
ulong *src = (ulong *) srcp;
uint i, tail;
for(i = 0; i < (len / sizeof(ulong)); i++)
dst[i] = src[i];
tail = len & (sizeof(ulong) - 1);
if(tail) {
uchar *dstb = (uchar *) dstp;
uchar *srcb = (uchar *) srcp;
for(i = len - tail; i < len; i++)
dstb[i] = srcb[i];
}
}
/* 32-bit / 64-bit optimised memory erase aka memset() to zero */
static void neoscrypt_erase(void *dstp, uint len)
{
const ulong null = 0;
ulong *dst = (ulong *) dstp;
uint i, tail;
for (i = 0; i < (len / sizeof(ulong)); i++)
dst[i] = null;
tail = len & (sizeof(ulong) - 1);
if (tail) {
uchar *dstb = (uchar *) dstp;
for(i = len - tail; i < len; i++)
dstb[i] = (uchar)null;
}
}
/* 32-bit / 64-bit optimised XOR engine */
static void neoscrypt_xor(void *dstp, const void *srcp, uint len)
{
ulong *dst = (ulong *) dstp;
ulong *src = (ulong *) srcp;
uint i, tail;
for (i = 0; i < (len / sizeof(ulong)); i++)
dst[i] ^= src[i];
tail = len & (sizeof(ulong) - 1);
if (tail) {
uchar *dstb = (uchar *) dstp;
uchar *srcb = (uchar *) srcp;
for(i = len - tail; i < len; i++)
dstb[i] ^= srcb[i];
}
}
/* BLAKE2s */
#define BLAKE2S_BLOCK_SIZE 64U
#define BLAKE2S_OUT_SIZE 32U
#define BLAKE2S_KEY_SIZE 32U
/* Parameter block of 32 bytes */
typedef struct blake2s_param_t {
uchar digest_length;
uchar key_length;
uchar fanout;
uchar depth;
uint leaf_length;
uchar node_offset[6];
uchar node_depth;
uchar inner_length;
uchar salt[8];
uchar personal[8];
} blake2s_param;
/* State block of 180 bytes */
typedef struct blake2s_state_t {
uint h[8];
uint t[2];
uint f[2];
uchar buf[2 * BLAKE2S_BLOCK_SIZE];
uint buflen;
} blake2s_state;
static const uint blake2s_IV[8] = {
0x6A09E667, 0xBB67AE85, 0x3C6EF372, 0xA54FF53A,
0x510E527F, 0x9B05688C, 0x1F83D9AB, 0x5BE0CD19
};
static const uint8_t blake2s_sigma[10][16] = {
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 } ,
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 } ,
{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 } ,
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 } ,
{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 } ,
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 } ,
{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 } ,
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 } ,
{ 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 } ,
{ 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13 , 0 } ,
};
static void blake2s_compress(blake2s_state *S, const uint *buf)
{
uint i;
uint m[16];
uint v[16];
neoscrypt_copy(m, buf, 64);
neoscrypt_copy(v, S, 32);
v[ 8] = blake2s_IV[0];
v[ 9] = blake2s_IV[1];
v[10] = blake2s_IV[2];
v[11] = blake2s_IV[3];
v[12] = S->t[0] ^ blake2s_IV[4];
v[13] = S->t[1] ^ blake2s_IV[5];
v[14] = S->f[0] ^ blake2s_IV[6];
v[15] = S->f[1] ^ blake2s_IV[7];
#define G(r,i,a,b,c,d) do { \
a = a + b + m[blake2s_sigma[r][2*i+0]]; \
d = ROTR32(d ^ a, 16); \
c = c + d; \
b = ROTR32(b ^ c, 12); \
a = a + b + m[blake2s_sigma[r][2*i+1]]; \
d = ROTR32(d ^ a, 8); \
c = c + d; \
b = ROTR32(b ^ c, 7); \
} while(0)
#define ROUND(r) do { \
G(r, 0, v[ 0], v[ 4], v[ 8], v[12]); \
G(r, 1, v[ 1], v[ 5], v[ 9], v[13]); \
G(r, 2, v[ 2], v[ 6], v[10], v[14]); \
G(r, 3, v[ 3], v[ 7], v[11], v[15]); \
G(r, 4, v[ 0], v[ 5], v[10], v[15]); \
G(r, 5, v[ 1], v[ 6], v[11], v[12]); \
G(r, 6, v[ 2], v[ 7], v[ 8], v[13]); \
G(r, 7, v[ 3], v[ 4], v[ 9], v[14]); \
} while(0)
ROUND(0);
ROUND(1);
ROUND(2);
ROUND(3);
ROUND(4);
ROUND(5);
ROUND(6);
ROUND(7);
ROUND(8);
ROUND(9);
for (i = 0; i < 8; i++)
S->h[i] = S->h[i] ^ v[i] ^ v[i + 8];
#undef G
#undef ROUND
}
static void blake2s_update(blake2s_state *S, const uchar *input, uint input_size)
{
uint left, fill;
while(input_size > 0) {
left = S->buflen;
fill = 2 * BLAKE2S_BLOCK_SIZE - left;
if(input_size > fill) {
/* Buffer fill */
neoscrypt_copy(S->buf + left, input, fill);
S->buflen += fill;
/* Counter increment */
S->t[0] += BLAKE2S_BLOCK_SIZE;
/* Compress */
blake2s_compress(S, (uint *) S->buf);
/* Shift buffer left */
neoscrypt_copy(S->buf, S->buf + BLAKE2S_BLOCK_SIZE, BLAKE2S_BLOCK_SIZE);
S->buflen -= BLAKE2S_BLOCK_SIZE;
input += fill;
input_size -= fill;
} else {
neoscrypt_copy(S->buf + left, input, input_size);
S->buflen += input_size;
/* Do not compress */
input += input_size;
input_size = 0;
}
}
}
static void neoscrypt_blake2s(const void *input, const uint input_size, const void *key, const uchar key_size,
void *output, const uchar output_size)
{
uchar block[BLAKE2S_BLOCK_SIZE];
blake2s_param P[1];
blake2s_state S[1];
/* Initialise */
neoscrypt_erase(P, 32);
P->digest_length = output_size;
P->key_length = key_size;
P->fanout = 1;
P->depth = 1;
neoscrypt_erase(S, 180);
neoscrypt_copy(S, blake2s_IV, 32);
neoscrypt_xor(S, P, 32);
neoscrypt_erase(block, BLAKE2S_BLOCK_SIZE);
neoscrypt_copy(block, key, key_size);
blake2s_update(S, (uchar *) block, BLAKE2S_BLOCK_SIZE);
/* Update */
blake2s_update(S, (uchar *) input, input_size);
/* Finish */
if(S->buflen > BLAKE2S_BLOCK_SIZE) {
S->t[0] += BLAKE2S_BLOCK_SIZE;
blake2s_compress(S, (uint *) S->buf);
S->buflen -= BLAKE2S_BLOCK_SIZE;
neoscrypt_copy(S->buf, S->buf + BLAKE2S_BLOCK_SIZE, S->buflen);
}
S->t[0] += S->buflen;
S->f[0] = ~0U;
neoscrypt_erase(S->buf + S->buflen, 2 * BLAKE2S_BLOCK_SIZE - S->buflen);
blake2s_compress(S, (uint *) S->buf);
/* Write back */
neoscrypt_copy(output, S, output_size);
//for (int k = 0; k<4; k++) { printf("cpu blake %d %08x %08x\n", k, ((unsigned int*)output)[2 * k], ((unsigned int*)output)[2 * k + 1]); }
}
#define FASTKDF_BUFFER_SIZE 256U
/* FastKDF, a fast buffered key derivation function:
* FASTKDF_BUFFER_SIZE must be a power of 2;
* password_len, salt_len and output_len should not exceed FASTKDF_BUFFER_SIZE;
* prf_output_size must be <= prf_key_size; */
static void neoscrypt_fastkdf(const uchar *password, uint password_len, const uchar *salt, uint salt_len,
uint N, uchar *output, uint output_len)
{
//for (int i = 0; i<10; i++) { printf("cpu password %d %08x %08x\n", i, ((unsigned int*)password)[2 * i], ((unsigned int*)password)[2 * i+1]); }
const uint stack_align = 0x40;
const uint kdf_buf_size = 256U; //FASTKDF_BUFFER_SIZE
const uint prf_input_size = 64U; //BLAKE2S_BLOCK_SIZE
const uint prf_key_size = 32U; //BLAKE2S_KEY_SIZE
const uint prf_output_size = 32U; //BLAKE2S_OUT_SIZE
uint bufptr, a, b, i, j;
uchar *A, *B, *prf_input, *prf_key, *prf_output;
uchar *stack;
stack = (uchar*)malloc(sizeof(uchar) * 2 * kdf_buf_size + prf_input_size + prf_key_size + prf_output_size + stack_align);
/* Align and set up the buffers in stack */
//uchar stack[2 * kdf_buf_size + prf_input_size + prf_key_size + prf_output_size + stack_align];
A = &stack[stack_align & ~(stack_align - 1)];
B = &A[kdf_buf_size + prf_input_size];
prf_output = &A[2 * kdf_buf_size + prf_input_size + prf_key_size];
/* Initialise the password buffer */
if(password_len > kdf_buf_size)
password_len = kdf_buf_size;
a = kdf_buf_size / password_len;
for(i = 0; i < a; i++)
neoscrypt_copy(&A[i * password_len], &password[0], password_len);
b = kdf_buf_size - a * password_len;
if(b)
neoscrypt_copy(&A[a * password_len], &password[0], b);
neoscrypt_copy(&A[kdf_buf_size], &password[0], prf_input_size);
/* Initialise the salt buffer */
if(salt_len > kdf_buf_size)
salt_len = kdf_buf_size;
a = kdf_buf_size / salt_len;
for(i = 0; i < a; i++)
neoscrypt_copy(&B[i * salt_len], &salt[0], salt_len);
b = kdf_buf_size - a * salt_len;
if(b)
neoscrypt_copy(&B[a * salt_len], &salt[0], b);
neoscrypt_copy(&B[kdf_buf_size], &salt[0], prf_key_size);
/* The primary iteration */
for(i = 0, bufptr = 0; i < N; i++) {
/* Map the PRF input buffer */
prf_input = &A[bufptr];
/* Map the PRF key buffer */
prf_key = &B[bufptr];
/* PRF */
// for (int k = 0; k<(prf_input_size/4); k++) { printf("cpu bufptr %08x before blake %d %d %08x \n",bufptr, i, k, ((unsigned int*)prf_input)[k]); }
neoscrypt_blake2s(prf_input, prf_input_size, prf_key, prf_key_size, prf_output, prf_output_size);
// for (int k = 0; k<(prf_output_size/4); k++) { printf("cpu after blake %d %d %08x \n", i, k, ((unsigned int*)prf_output)[k]); }
/* Calculate the next buffer pointer */
for(j = 0, bufptr = 0; j < prf_output_size; j++)
bufptr += prf_output[j];
bufptr &= (kdf_buf_size - 1);
/* Modify the salt buffer */
neoscrypt_xor(&B[bufptr], &prf_output[0], prf_output_size);
/* Head modified, tail updated */
if(bufptr < prf_key_size)
neoscrypt_copy(&B[kdf_buf_size + bufptr], &B[bufptr], MIN(prf_output_size, prf_key_size - bufptr));
/* Tail modified, head updated */
if((kdf_buf_size - bufptr) < prf_output_size)
neoscrypt_copy(&B[0], &B[kdf_buf_size], prf_output_size - (kdf_buf_size - bufptr));
}
/* Modify and copy into the output buffer */
if(output_len > kdf_buf_size)
output_len = kdf_buf_size;
a = kdf_buf_size - bufptr;
if(a >= output_len) {
neoscrypt_xor(&B[bufptr], &A[0], output_len);
neoscrypt_copy(&output[0], &B[bufptr], output_len);
} else {
neoscrypt_xor(&B[bufptr], &A[0], a);
neoscrypt_xor(&B[0], &A[a], output_len - a);
neoscrypt_copy(&output[0], &B[bufptr], a);
neoscrypt_copy(&output[a], &B[0], output_len - a);
}
// for (int i = 0; i<10; i++) { printf("cpu fastkdf %d %08x %08x\n", i, ((unsigned int*)output)[2 * i], ((unsigned int*)output)[2 * i + 1]); }
}
/* Configurable optimised block mixer */
static void neoscrypt_blkmix(uint *X, uint *Y, uint r, uint mixmode)
{
uint i, mixer, rounds;
mixer = mixmode >> 8;
rounds = mixmode & 0xFF;
/* NeoScrypt flow: Scrypt flow:
Xa ^= Xd; M(Xa'); Ya = Xa"; Xa ^= Xb; M(Xa'); Ya = Xa";
Xb ^= Xa"; M(Xb'); Yb = Xb"; Xb ^= Xa"; M(Xb'); Yb = Xb";
Xc ^= Xb"; M(Xc'); Yc = Xc"; Xa" = Ya;
Xd ^= Xc"; M(Xd'); Yd = Xd"; Xb" = Yb;
Xa" = Ya; Xb" = Yc;
Xc" = Yb; Xd" = Yd; */
if (r == 1) {
neoscrypt_blkxor(&X[0], &X[16], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[0], rounds);
else
neoscrypt_salsa(&X[0], rounds);
neoscrypt_blkxor(&X[16], &X[0], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[16], rounds);
else
neoscrypt_salsa(&X[16], rounds);
return;
}
if (r == 2) {
neoscrypt_blkxor(&X[0], &X[48], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[0], rounds);
else
neoscrypt_salsa(&X[0], rounds);
neoscrypt_blkxor(&X[16], &X[0], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[16], rounds);
else
neoscrypt_salsa(&X[16], rounds);
neoscrypt_blkxor(&X[32], &X[16], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[32], rounds);
else
neoscrypt_salsa(&X[32], rounds);
neoscrypt_blkxor(&X[48], &X[32], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[48], rounds);
else
neoscrypt_salsa(&X[48], rounds);
neoscrypt_blkswp(&X[16], &X[32], SCRYPT_BLOCK_SIZE);
return;
}
/* Reference code for any reasonable r */
for (i = 0; i < 2 * r; i++) {
if(i) neoscrypt_blkxor(&X[16 * i], &X[16 * (i - 1)], SCRYPT_BLOCK_SIZE);
else neoscrypt_blkxor(&X[0], &X[16 * (2 * r - 1)], SCRYPT_BLOCK_SIZE);
if(mixer)
neoscrypt_chacha(&X[16 * i], rounds);
else
neoscrypt_salsa(&X[16 * i], rounds);
neoscrypt_blkcpy(&Y[16 * i], &X[16 * i], SCRYPT_BLOCK_SIZE);
}
for (i = 0; i < r; i++)
neoscrypt_blkcpy(&X[16 * i], &Y[16 * 2 * i], SCRYPT_BLOCK_SIZE);
for (i = 0; i < r; i++)
neoscrypt_blkcpy(&X[16 * (i + r)], &Y[16 * (2 * i + 1)], SCRYPT_BLOCK_SIZE);
}
/* NeoScrypt core engine:
* p = 1, salt = password;
* Basic customisation (required):
* profile bit 0:
* 0 = NeoScrypt(128, 2, 1) with Salsa20/20 and ChaCha20/20;
* 1 = Scrypt(1024, 1, 1) with Salsa20/8;
* profile bits 4 to 1:
* 0000 = FastKDF-BLAKE2s;
* 0001 = PBKDF2-HMAC-SHA256;
* Extended customisation (optional):
* profile bit 31:
* 0 = extended customisation absent;
* 1 = extended customisation present;
* profile bits 7 to 5 (rfactor):
* 000 = r of 1;
* 001 = r of 2;
* 010 = r of 4;
* ...
* 111 = r of 128;
* profile bits 12 to 8 (Nfactor):
* 00000 = N of 2;
* 00001 = N of 4;
* 00010 = N of 8;
* .....
* 00110 = N of 128;
* .....
* 01001 = N of 1024;
* .....
* 11110 = N of 2147483648;
* profile bits 30 to 13 are reserved */
void neoscrypt(const uchar *password, uchar *output, uint profile)
{
uint N = 128, r = 2, dblmix = 1, mixmode = 0x14, stack_align = 0x40;
uint kdf, i, j;
uint *X, *Y, *Z, *V;
if(profile & 0x1) {
N = 1024; /* N = (1 << (Nfactor + 1)); */
r = 1; /* r = (1 << rfactor); */
dblmix = 0; /* Salsa only */
mixmode = 0x08; /* 8 rounds */
}
if(profile >> 31) {
N = (1 << (((profile >> 8) & 0x1F) + 1));
r = (1 << ((profile >> 5) & 0x7));
}
uchar *stack;
stack = (uchar*)malloc(((N + 3) * r * 2 * SCRYPT_BLOCK_SIZE + stack_align)*sizeof(uchar));
/* X = r * 2 * SCRYPT_BLOCK_SIZE */
X = (uint *) &stack[stack_align & ~(stack_align - 1)];
/* Z is a copy of X for ChaCha */
Z = &X[32 * r];
/* Y is an X sized temporal space */
Y = &X[64 * r];
/* V = N * r * 2 * SCRYPT_BLOCK_SIZE */
V = &X[96 * r];
/* X = KDF(password, salt) */
kdf = (profile >> 1) & 0xF;
switch(kdf) {
default:
case(0x0):
neoscrypt_fastkdf(password, 80, password, 80, 32, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE);
break;
case(0x1):
neoscrypt_pbkdf2_sha256(password, 80, password, 80, 1, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE);
break;
}
/* Process ChaCha 1st, Salsa 2nd and XOR them into FastKDF; otherwise Salsa only */
if(dblmix) {
/* blkcpy(Z, X) */
neoscrypt_blkcpy(&Z[0], &X[0], r * 2 * SCRYPT_BLOCK_SIZE);
/* Z = SMix(Z) */
for(i = 0; i < N; i++) {
/* blkcpy(V, Z) */
neoscrypt_blkcpy(&V[i * (32 * r)], &Z[0], r * 2 * SCRYPT_BLOCK_SIZE);
/* blkmix(Z, Y) */
neoscrypt_blkmix(&Z[0], &Y[0], r, (mixmode | 0x0100));
}
for(i = 0; i < N; i++) {
/* integerify(Z) mod N */
j = (32 * r) * (Z[16 * (2 * r - 1)] & (N - 1));
/* blkxor(Z, V) */
neoscrypt_blkxor(&Z[0], &V[j], r * 2 * SCRYPT_BLOCK_SIZE);
/* blkmix(Z, Y) */
neoscrypt_blkmix(&Z[0], &Y[0], r, (mixmode | 0x0100));
}
}
#if (ASM)
/* Must be called before and after SSE2 Salsa */
neoscrypt_salsa_tangle(&X[0], r * 2);
#endif
/* X = SMix(X) */
for(i = 0; i < N; i++) {
/* blkcpy(V, X) */
neoscrypt_blkcpy(&V[i * (32 * r)], &X[0], r * 2 * SCRYPT_BLOCK_SIZE);
/* blkmix(X, Y) */
neoscrypt_blkmix(&X[0], &Y[0], r, mixmode);
}
for(i = 0; i < N; i++) {
/* integerify(X) mod N */
j = (32 * r) * (X[16 * (2 * r - 1)] & (N - 1));
/* blkxor(X, V) */
neoscrypt_blkxor(&X[0], &V[j], r * 2 * SCRYPT_BLOCK_SIZE);
/* blkmix(X, Y) */
neoscrypt_blkmix(&X[0], &Y[0], r, mixmode);
}
#if (ASM)
neoscrypt_salsa_tangle(&X[0], r * 2);
#endif
if(dblmix)
/* blkxor(X, Z) */
neoscrypt_blkxor(&X[0], &Z[0], r * 2 * SCRYPT_BLOCK_SIZE);
/* output = KDF(password, X) */
switch(kdf) {
default:
case(0x0):
neoscrypt_fastkdf(password, 80, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE, 32, output, 32);
break;
case(0x1):
neoscrypt_pbkdf2_sha256(password, 80, (uchar *) X, r * 2 * SCRYPT_BLOCK_SIZE, 1, output, 32);
break;
}
}

33
neoscrypt/neoscrypt.h

@ -0,0 +1,33 @@ @@ -0,0 +1,33 @@
#if (__cplusplus)
extern "C" {
#endif
void neoscrypt(const unsigned char *input, unsigned char *output, unsigned int profile);
#if (__cplusplus)
}
#else
#define SCRYPT_BLOCK_SIZE 64
#define SCRYPT_HASH_BLOCK_SIZE 64
#define SCRYPT_HASH_DIGEST_SIZE 32
typedef uint8_t hash_digest[SCRYPT_HASH_DIGEST_SIZE];
#define ROTL32(a,b) (((a) << (b)) | ((a) >> (32 - b)))
#define ROTR32(a,b) (((a) >> (b)) | ((a) << (32 - b)))
#define U8TO32_BE(p) \
(((uint32_t)((p)[0]) << 24) | ((uint32_t)((p)[1]) << 16) | \
((uint32_t)((p)[2]) << 8) | ((uint32_t)((p)[3])))
#define U32TO8_BE(p, v) \
(p)[0] = (uint8_t)((v) >> 24); (p)[1] = (uint8_t)((v) >> 16); \
(p)[2] = (uint8_t)((v) >> 8); (p)[3] = (uint8_t)((v) );
#define U64TO8_BE(p, v) \
U32TO8_BE((p), (uint32_t)((v) >> 32)); \
U32TO8_BE((p) + 4, (uint32_t)((v) ));
#endif

3
util.cpp

@ -1777,6 +1777,9 @@ void print_hash_tests(void) @@ -1777,6 +1777,9 @@ void print_hash_tests(void)
myriadhash(&hash[0], &buf[0]);
printpfx("myriad", hash);
neoscrypt(&buf[0], &hash[0], 80000620);
printpfx("neoscrypt", hash);
nist5hash(&hash[0], &buf[0]);
printpfx("nist5", hash);

Loading…
Cancel
Save