lyra2v2, bmw256 and cubehash256 cleanup + diff fix
This commit is contained in:
parent
4b04ca8027
commit
53cd591956
@ -3,28 +3,24 @@
|
||||
|
||||
#include "cuda_helper.h"
|
||||
|
||||
#undef SPH_ROTL32
|
||||
#define SPH_ROTL32 ROTL32
|
||||
|
||||
|
||||
// die Message it Padding zur Berechnung auf der GPU
|
||||
__constant__ uint32_t c_PaddedMessage80[32]; // padded message (80 bytes + padding)
|
||||
__constant__ uint32_t ZDH[16];
|
||||
static uint32_t *d_gnounce[MAX_GPUS];
|
||||
static uint32_t *d_GNonce[MAX_GPUS];
|
||||
|
||||
__constant__ uint32_t pTarget[8];
|
||||
#define shl(x, n) ((x) << (n))
|
||||
#define shr(x, n) ((x) >> (n))
|
||||
//#define SHR(x, n) SHR2(x, n)
|
||||
//#define SHL(x, n) SHL2(x, n)
|
||||
__constant__ uint64_t pTarget[8];
|
||||
|
||||
#define shl(x, n) ((x) << (n))
|
||||
#define shr(x, n) ((x) >> (n))
|
||||
|
||||
#define ss0(x) (shr((x), 1) ^ shl((x), 3) ^ SPH_ROTL32((x), 4) ^ SPH_ROTL32((x), 19))
|
||||
#define ss1(x) (shr((x), 1) ^ shl((x), 2) ^ SPH_ROTL32((x), 8) ^ SPH_ROTL32((x), 23))
|
||||
#define ss2(x) (shr((x), 2) ^ shl((x), 1) ^ SPH_ROTL32((x), 12) ^ SPH_ROTL32((x), 25))
|
||||
#define ss3(x) (shr((x), 2) ^ shl((x), 2) ^ SPH_ROTL32((x), 15) ^ SPH_ROTL32((x), 29))
|
||||
#define ss4(x) (shr((x), 1) ^ (x))
|
||||
#define ss5(x) (shr((x), 2) ^ (x))
|
||||
|
||||
#define ROTL32host(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
|
||||
// #define SPH_ROTL32 SPH_ROTL32
|
||||
#define ss0(x) (shr((x), 1) ^ shl((x), 3) ^ SPH_ROTL32((x), 4) ^ SPH_ROTL32((x), 19))
|
||||
#define ss1(x) (shr((x), 1) ^ shl((x), 2) ^ SPH_ROTL32((x), 8) ^ SPH_ROTL32((x), 23))
|
||||
#define ss2(x) (shr((x), 2) ^ shl((x), 1) ^ SPH_ROTL32((x), 12) ^ SPH_ROTL32((x), 25))
|
||||
#define ss3(x) (shr((x), 2) ^ shl((x), 2) ^ SPH_ROTL32((x), 15) ^ SPH_ROTL32((x), 29))
|
||||
#define ss4(x) (shr((x), 1) ^ (x))
|
||||
#define ss5(x) (shr((x), 2) ^ (x))
|
||||
#define rs1(x) SPH_ROTL32((x), 3)
|
||||
#define rs2(x) SPH_ROTL32((x), 7)
|
||||
#define rs3(x) SPH_ROTL32((x), 13)
|
||||
@ -34,38 +30,132 @@ __constant__ uint32_t pTarget[8];
|
||||
#define rs7(x) SPH_ROTL32((x), 27)
|
||||
|
||||
/* Message expansion function 1 */
|
||||
__forceinline__ __device__ uint32_t expand32_1(int i, uint32_t *M32, uint32_t *H, uint32_t *Q)
|
||||
__forceinline__ __device__
|
||||
uint32_t expand32_1(int i, uint32_t *M32, const uint32_t *H, uint32_t *Q)
|
||||
{
|
||||
#undef SPH_ROTL32
|
||||
#define SPH_ROTL32 ROTL32
|
||||
return (ss1(Q[i - 16]) + ss2(Q[i - 15]) + ss3(Q[i - 14]) + ss0(Q[i - 13])
|
||||
+ ss1(Q[i - 12]) + ss2(Q[i - 11]) + ss3(Q[i - 10]) + ss0(Q[i - 9])
|
||||
+ ss1(Q[i - 8]) + ss2(Q[i - 7]) + ss3(Q[i - 6]) + ss0(Q[i - 5])
|
||||
+ ss1(Q[i - 4]) + ss2(Q[i - 3]) + ss3(Q[i - 2]) + ss0(Q[i - 1])
|
||||
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
|
||||
#undef SPH_ROTL32
|
||||
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1)
|
||||
+ SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1)
|
||||
- SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
|
||||
}
|
||||
|
||||
/* Message expansion function 2 */
|
||||
__forceinline__ __device__ uint32_t expand32_2(int i, uint32_t *M32, uint32_t *H, uint32_t *Q)
|
||||
__forceinline__ __device__
|
||||
uint32_t expand32_2(int i, uint32_t *M32, const uint32_t *H, uint32_t *Q)
|
||||
{
|
||||
#undef SPH_ROTL32
|
||||
#define SPH_ROTL32 ROTL32
|
||||
return (Q[i - 16] + rs1(Q[i - 15]) + Q[i - 14] + rs2(Q[i - 13])
|
||||
+ Q[i - 12] + rs3(Q[i - 11]) + Q[i - 10] + rs4(Q[i - 9])
|
||||
+ Q[i - 8] + rs5(Q[i - 7]) + Q[i - 6] + rs6(Q[i - 5])
|
||||
+ Q[i - 4] + rs7(Q[i - 3]) + ss4(Q[i - 2]) + ss5(Q[i - 1])
|
||||
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1) + SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1) - SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
|
||||
#undef SPH_ROTL32
|
||||
+ ((i*(0x05555555ul) + SPH_ROTL32(M32[(i - 16) % 16], ((i - 16) % 16) + 1)
|
||||
+ SPH_ROTL32(M32[(i - 13) % 16], ((i - 13) % 16) + 1)
|
||||
- SPH_ROTL32(M32[(i - 6) % 16], ((i - 6) % 16) + 1)) ^ H[(i - 16 + 7) % 16]));
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void Compression256(uint32_t * M32, uint32_t * H)
|
||||
__forceinline__ __device__
|
||||
void Compression256(uint32_t * M32)
|
||||
{
|
||||
uint32_t Q[32], XL32, XH32;
|
||||
|
||||
const uint32_t H[16] = {
|
||||
0x40414243, 0x44454647, 0x48494A4B, 0x4C4D4E4F,
|
||||
0x50515253, 0x54555657, 0x58595A5B, 0x5C5D5E5F,
|
||||
0x60616263, 0x64656667, 0x68696A6B, 0x6C6D6E6F,
|
||||
0x70717273, 0x74757677, 0x78797A7B, 0x7C7D7E7F
|
||||
};
|
||||
|
||||
Q[0] = (M32[5] ^ H[5]) - (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[13] ^ H[13]) + (M32[14] ^ H[14]);
|
||||
Q[1] = (M32[6] ^ H[6]) - (M32[8] ^ H[8]) + (M32[11] ^ H[11]) + (M32[14] ^ H[14]) - (M32[15] ^ H[15]);
|
||||
Q[2] = (M32[0] ^ H[0]) + (M32[7] ^ H[7]) + (M32[9] ^ H[9]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
|
||||
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (M32[8] ^ H[8]) - (M32[10] ^ H[10]) + (M32[13] ^ H[13]);
|
||||
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (M32[9] ^ H[9]) - (M32[11] ^ H[11]) - (M32[14] ^ H[14]);
|
||||
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (M32[10] ^ H[10]) - (M32[12] ^ H[12]) + (M32[15] ^ H[15]);
|
||||
Q[6] = (M32[4] ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (M32[11] ^ H[11]) + (M32[13] ^ H[13]);
|
||||
Q[7] = (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[5] ^ H[5]) - (M32[12] ^ H[12]) - (M32[14] ^ H[14]);
|
||||
Q[8] = (M32[2] ^ H[2]) - (M32[5] ^ H[5]) - (M32[6] ^ H[6]) + (M32[13] ^ H[13]) - (M32[15] ^ H[15]);
|
||||
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (M32[6] ^ H[6]) - (M32[7] ^ H[7]) + (M32[14] ^ H[14]);
|
||||
Q[10] = (M32[8] ^ H[8]) - (M32[1] ^ H[1]) - (M32[4] ^ H[4]) - (M32[7] ^ H[7]) + (M32[15] ^ H[15]);
|
||||
Q[11] = (M32[8] ^ H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (M32[5] ^ H[5]) + (M32[9] ^ H[9]);
|
||||
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[10] ^ H[10]);
|
||||
Q[13] = (M32[2] ^ H[2]) + (M32[4] ^ H[4]) + (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[11] ^ H[11]);
|
||||
Q[14] = (M32[3] ^ H[3]) - (M32[5] ^ H[5]) + (M32[8] ^ H[8]) - (M32[11] ^ H[11]) - (M32[12] ^ H[12]);
|
||||
Q[15] = (M32[12] ^ H[12]) - (M32[4] ^ H[4]) - (M32[6] ^ H[6]) - (M32[9] ^ H[9]) + (M32[13] ^ H[13]);
|
||||
|
||||
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe. */
|
||||
Q[0] = ss0(Q[0]) + H[1];
|
||||
Q[1] = ss1(Q[1]) + H[2];
|
||||
Q[2] = ss2(Q[2]) + H[3];
|
||||
Q[3] = ss3(Q[3]) + H[4];
|
||||
Q[4] = ss4(Q[4]) + H[5];
|
||||
Q[5] = ss0(Q[5]) + H[6];
|
||||
Q[6] = ss1(Q[6]) + H[7];
|
||||
Q[7] = ss2(Q[7]) + H[8];
|
||||
Q[8] = ss3(Q[8]) + H[9];
|
||||
Q[9] = ss4(Q[9]) + H[10];
|
||||
Q[10] = ss0(Q[10]) + H[11];
|
||||
Q[11] = ss1(Q[11]) + H[12];
|
||||
Q[12] = ss2(Q[12]) + H[13];
|
||||
Q[13] = ss3(Q[13]) + H[14];
|
||||
Q[14] = ss4(Q[14]) + H[15];
|
||||
Q[15] = ss0(Q[15]) + H[0];
|
||||
|
||||
/* This is the Message expansion or f_1 in the documentation. */
|
||||
/* It has 16 rounds. */
|
||||
/* Blue Midnight Wish has two tunable security parameters. */
|
||||
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
|
||||
/* The following relation for these parameters should is satisfied: */
|
||||
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
|
||||
|
||||
#pragma unroll
|
||||
for (int i=16; i<18; i++)
|
||||
Q[i] = expand32_1(i, M32, H, Q);
|
||||
|
||||
#pragma nounroll
|
||||
for (int i=18; i<32; i++)
|
||||
Q[i] = expand32_2(i, M32, H, Q);
|
||||
|
||||
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
|
||||
/* 16 new variables that are prooduced in the Message Expansion part. */
|
||||
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
|
||||
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
|
||||
|
||||
|
||||
/* This part is the function f_2 - in the documentation */
|
||||
|
||||
/* Compute the double chaining pipe for the next message block. */
|
||||
M32[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
|
||||
M32[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
|
||||
M32[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
|
||||
M32[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
|
||||
M32[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
|
||||
M32[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
|
||||
M32[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
|
||||
M32[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
|
||||
|
||||
M32[8] = SPH_ROTL32(M32[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
|
||||
M32[9] = SPH_ROTL32(M32[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
|
||||
M32[10] = SPH_ROTL32(M32[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
|
||||
M32[11] = SPH_ROTL32(M32[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
|
||||
M32[12] = SPH_ROTL32(M32[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
|
||||
M32[13] = SPH_ROTL32(M32[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
|
||||
M32[14] = SPH_ROTL32(M32[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
|
||||
M32[15] = SPH_ROTL32(M32[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
|
||||
}
|
||||
|
||||
__forceinline__ __device__
|
||||
void Compression256_2(uint32_t * M32)
|
||||
{
|
||||
#undef SPH_ROTL32
|
||||
#define SPH_ROTL32 ROTL32
|
||||
int i;
|
||||
uint32_t XL32, XH32, Q[32];
|
||||
|
||||
const uint32_t H[16] = {
|
||||
0xaaaaaaa0, 0xaaaaaaa1, 0xaaaaaaa2, 0xaaaaaaa3,
|
||||
0xaaaaaaa4, 0xaaaaaaa5, 0xaaaaaaa6, 0xaaaaaaa7,
|
||||
0xaaaaaaa8, 0xaaaaaaa9, 0xaaaaaaaa, 0xaaaaaaab,
|
||||
0xaaaaaaac, 0xaaaaaaad, 0xaaaaaaae, 0xaaaaaaaf
|
||||
};
|
||||
|
||||
Q[0] = (M32[5] ^ H[5]) - (M32[7] ^ H[7]) + (M32[10] ^ H[10]) + (M32[13] ^ H[13]) + (M32[14] ^ H[14]);
|
||||
Q[1] = (M32[6] ^ H[6]) - (M32[8] ^ H[8]) + (M32[11] ^ H[11]) + (M32[14] ^ H[14]) - (M32[15] ^ H[15]);
|
||||
@ -109,136 +199,23 @@ __forceinline__ __device__ void Compression256(uint32_t * M32, uint32_t * H)
|
||||
/* The following relation for these parameters should is satisfied: */
|
||||
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
|
||||
|
||||
for (i = 0; i<2; i++)
|
||||
Q[i + 16] = expand32_1(i + 16, M32, H, Q);
|
||||
#pragma unroll
|
||||
for (int i = 16; i<18; i++)
|
||||
Q[i] = expand32_1(i, M32, H, Q);
|
||||
|
||||
for (i = 2; i<16; i++)
|
||||
Q[i + 16] = expand32_2(i + 16, M32, H, Q);
|
||||
#pragma nounroll
|
||||
for (int i = 18; i<32; i++)
|
||||
Q[i] = expand32_2(i, M32, H, Q);
|
||||
|
||||
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
|
||||
/* 16 new variables that are prooduced in the Message Expansion part. */
|
||||
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
|
||||
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
|
||||
|
||||
|
||||
/* This part is the function f_2 - in the documentation */
|
||||
|
||||
/* Compute the double chaining pipe for the next message block. */
|
||||
H[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
|
||||
H[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
|
||||
H[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
|
||||
H[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
|
||||
H[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
|
||||
H[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
|
||||
H[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
|
||||
H[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
|
||||
|
||||
H[8] = SPH_ROTL32(H[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
|
||||
H[9] = SPH_ROTL32(H[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
|
||||
H[10] = SPH_ROTL32(H[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
|
||||
H[11] = SPH_ROTL32(H[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
|
||||
H[12] = SPH_ROTL32(H[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
|
||||
H[13] = SPH_ROTL32(H[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
|
||||
H[14] = SPH_ROTL32(H[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
|
||||
H[15] = SPH_ROTL32(H[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
|
||||
|
||||
#undef SPH_ROTL32
|
||||
|
||||
}
|
||||
|
||||
__forceinline__ __device__ void Compression256_2(uint32_t * M32, uint32_t * H)
|
||||
{
|
||||
#undef SPH_ROTL32
|
||||
#define SPH_ROTL32 ROTL32
|
||||
int i;
|
||||
uint32_t XL32, XH32, Q[32];
|
||||
|
||||
/* This part is the function f0 - in the documentation */
|
||||
|
||||
/* First we mix the message block *M32 (M in the documatation) */
|
||||
/* with the previous double pipe *H. */
|
||||
/* For a fixed previous double pipe, or fixed message block, this */
|
||||
/* part is bijection. */
|
||||
/* This transformation diffuses every one bit difference in 5 words. */
|
||||
|
||||
Q[0] = (H[5]) - (H[7]) + (H[10]) + (H[13]) + (0x280 ^ H[14]);
|
||||
Q[1] = (H[6]) - (H[8]) + (H[11]) + (0x280 ^ H[14]) - (H[15]);
|
||||
Q[2] = (M32[0] ^ H[0]) + (H[7]) + (H[9]) - (H[12]) + (H[15]);
|
||||
Q[3] = (M32[0] ^ H[0]) - (M32[1] ^ H[1]) + (H[8]) - (H[10]) + (H[13]);
|
||||
Q[4] = (M32[1] ^ H[1]) + (M32[2] ^ H[2]) + (H[9]) - (H[11]) - (0x280 ^ H[14]);
|
||||
Q[5] = (M32[3] ^ H[3]) - (M32[2] ^ H[2]) + (H[10]) - (H[12]) + (H[15]);
|
||||
Q[6] = (0x80 ^ H[4]) - (M32[0] ^ H[0]) - (M32[3] ^ H[3]) - (H[11]) + (H[13]);
|
||||
Q[7] = (M32[1] ^ H[1]) - (0x80 ^ H[4]) - (H[5]) - (H[12]) - (0x280 ^ H[14]);
|
||||
Q[8] = (M32[2] ^ H[2]) - (H[5]) - (H[6]) + (H[13]) - (H[15]);
|
||||
Q[9] = (M32[0] ^ H[0]) - (M32[3] ^ H[3]) + (H[6]) - (H[7]) + (0x280 ^ H[14]);
|
||||
Q[10] = (H[8]) - (M32[1] ^ H[1]) - (0x80 ^ H[4]) - (H[7]) + (H[15]);
|
||||
Q[11] = (H[8]) - (M32[0] ^ H[0]) - (M32[2] ^ H[2]) - (H[5]) + (H[9]);
|
||||
Q[12] = (M32[1] ^ H[1]) + (M32[3] ^ H[3]) - (H[6]) - (H[9]) + (H[10]);
|
||||
Q[13] = (M32[2] ^ H[2]) + (0x80 ^ H[4]) + (H[7]) + (H[10]) + (H[11]);
|
||||
Q[14] = (M32[3] ^ H[3]) - (H[5]) + (H[8]) - (H[11]) - (H[12]);
|
||||
Q[15] = (H[12]) - (0x80 ^ H[4]) - (H[6]) - (H[9]) + (H[13]);
|
||||
|
||||
/* Diffuse the differences in every word in a bijective manner with ssi, and then add the values of the previous double pipe.*/
|
||||
|
||||
Q[0] = ss0(Q[0]) + H[1];
|
||||
Q[1] = ss1(Q[1]) + H[2];
|
||||
Q[2] = ss2(Q[2]) + H[3];
|
||||
Q[3] = ss3(Q[3]) + H[4];
|
||||
Q[4] = ss4(Q[4]) + H[5];
|
||||
Q[5] = ss0(Q[5]) + H[6];
|
||||
Q[6] = ss1(Q[6]) + H[7];
|
||||
Q[7] = ss2(Q[7]) + H[8];
|
||||
Q[8] = ss3(Q[8]) + H[9];
|
||||
Q[9] = ss4(Q[9]) + H[10];
|
||||
Q[10] = ss0(Q[10]) + H[11];
|
||||
Q[11] = ss1(Q[11]) + H[12];
|
||||
Q[12] = ss2(Q[12]) + H[13];
|
||||
Q[13] = ss3(Q[13]) + H[14];
|
||||
Q[14] = ss4(Q[14]) + H[15];
|
||||
Q[15] = ss0(Q[15]) + H[0];
|
||||
|
||||
/* This is the Message expansion or f_1 in the documentation. */
|
||||
/* It has 16 rounds. */
|
||||
/* Blue Midnight Wish has two tunable security parameters. */
|
||||
/* The parameters are named EXPAND_1_ROUNDS and EXPAND_2_ROUNDS. */
|
||||
/* The following relation for these parameters should is satisfied: */
|
||||
/* EXPAND_1_ROUNDS + EXPAND_2_ROUNDS = 16 */
|
||||
|
||||
for (i = 0; i<2; i++)
|
||||
Q[i + 16] = expand32_1(i + 16, M32, H, Q);
|
||||
|
||||
for (i = 2; i<16; i++)
|
||||
Q[i + 16] = expand32_2(i + 16, M32, H, Q);
|
||||
|
||||
/* Blue Midnight Wish has two temporary cummulative variables that accumulate via XORing */
|
||||
/* 16 new variables that are prooduced in the Message Expansion part. */
|
||||
XL32 = Q[16] ^ Q[17] ^ Q[18] ^ Q[19] ^ Q[20] ^ Q[21] ^ Q[22] ^ Q[23];
|
||||
XH32 = XL32^Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
|
||||
|
||||
|
||||
/* This part is the function f_2 - in the documentation */
|
||||
|
||||
/* Compute the double chaining pipe for the next message block. */
|
||||
H[0] = (shl(XH32, 5) ^ shr(Q[16], 5) ^ M32[0]) + (XL32 ^ Q[24] ^ Q[0]);
|
||||
H[1] = (shr(XH32, 7) ^ shl(Q[17], 8) ^ M32[1]) + (XL32 ^ Q[25] ^ Q[1]);
|
||||
H[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
|
||||
H[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
|
||||
H[4] = (shr(XH32, 3) ^ Q[20] ^ M32[4]) + (XL32 ^ Q[28] ^ Q[4]);
|
||||
H[5] = (shl(XH32, 6) ^ shr(Q[21], 6) ^ M32[5]) + (XL32 ^ Q[29] ^ Q[5]);
|
||||
H[6] = (shr(XH32, 4) ^ shl(Q[22], 6) ^ M32[6]) + (XL32 ^ Q[30] ^ Q[6]);
|
||||
H[7] = (shr(XH32, 11) ^ shl(Q[23], 2) ^ M32[7]) + (XL32 ^ Q[31] ^ Q[7]);
|
||||
|
||||
H[8] = SPH_ROTL32(H[4], 9) + (XH32 ^ Q[24] ^ M32[8]) + (shl(XL32, 8) ^ Q[23] ^ Q[8]);
|
||||
H[9] = SPH_ROTL32(H[5], 10) + (XH32 ^ Q[25] ^ M32[9]) + (shr(XL32, 6) ^ Q[16] ^ Q[9]);
|
||||
H[10] = SPH_ROTL32(H[6], 11) + (XH32 ^ Q[26] ^ M32[10]) + (shl(XL32, 6) ^ Q[17] ^ Q[10]);
|
||||
H[11] = SPH_ROTL32(H[7], 12) + (XH32 ^ Q[27] ^ M32[11]) + (shl(XL32, 4) ^ Q[18] ^ Q[11]);
|
||||
H[12] = SPH_ROTL32(H[0], 13) + (XH32 ^ Q[28] ^ M32[12]) + (shr(XL32, 3) ^ Q[19] ^ Q[12]);
|
||||
H[13] = SPH_ROTL32(H[1], 14) + (XH32 ^ Q[29] ^ M32[13]) + (shr(XL32, 4) ^ Q[20] ^ Q[13]);
|
||||
H[14] = SPH_ROTL32(H[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
|
||||
H[15] = SPH_ROTL32(H[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
|
||||
|
||||
#undef SPH_ROTL32
|
||||
XH32 = XL32 ^ Q[24] ^ Q[25] ^ Q[26] ^ Q[27] ^ Q[28] ^ Q[29] ^ Q[30] ^ Q[31];
|
||||
|
||||
M32[2] = (shr(XH32, 5) ^ shl(Q[18], 5) ^ M32[2]) + (XL32 ^ Q[26] ^ Q[2]);
|
||||
M32[3] = (shr(XH32, 1) ^ shl(Q[19], 5) ^ M32[3]) + (XL32 ^ Q[27] ^ Q[3]);
|
||||
M32[14] = SPH_ROTL32(M32[2], 15) + (XH32 ^ Q[30] ^ M32[14]) + (shr(XL32, 7) ^ Q[21] ^ Q[14]);
|
||||
M32[15] = SPH_ROTL32(M32[3], 16) + (XH32 ^ Q[31] ^ M32[15]) + (shr(XL32, 2) ^ Q[22] ^ Q[15]);
|
||||
}
|
||||
|
||||
#define TPB 512
|
||||
@ -248,27 +225,8 @@ void bmw256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g_hash
|
||||
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (thread < threads)
|
||||
{
|
||||
uint32_t dh[16] = {
|
||||
(0x40414243), (0x44454647),
|
||||
(0x48494A4B), (0x4C4D4E4F),
|
||||
(0x50515253), (0x54555657),
|
||||
(0x58595A5B), (0x5C5D5E5F),
|
||||
(0x60616263), (0x64656667),
|
||||
(0x68696A6B), (0x6C6D6E6F),
|
||||
(0x70717273), (0x74757677),
|
||||
(0x78797A7B), (0x7C7D7E7F)
|
||||
};
|
||||
uint32_t message[16] = { 0 };
|
||||
|
||||
|
||||
uint32_t final_s[16] = {
|
||||
(0xaaaaaaa0), (0xaaaaaaa1), (0xaaaaaaa2),
|
||||
(0xaaaaaaa3), (0xaaaaaaa4), (0xaaaaaaa5),
|
||||
(0xaaaaaaa6), (0xaaaaaaa7), (0xaaaaaaa8),
|
||||
(0xaaaaaaa9), (0xaaaaaaaa), (0xaaaaaaab),
|
||||
(0xaaaaaaac), (0xaaaaaaad), (0xaaaaaaae),
|
||||
(0xaaaaaaaf)
|
||||
};
|
||||
uint32_t message[16]={0};
|
||||
LOHI(message[0], message[1], __ldg(&g_hash[thread]));
|
||||
LOHI(message[2], message[3], __ldg(&g_hash[thread + 1 * threads]));
|
||||
LOHI(message[4], message[5], __ldg(&g_hash[thread + 2 * threads]));
|
||||
@ -276,10 +234,10 @@ void bmw256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g_hash
|
||||
|
||||
message[8]=0x80;
|
||||
message[14]=0x100;
|
||||
Compression256(message, dh);
|
||||
Compression256(dh, final_s);
|
||||
Compression256(message);
|
||||
Compression256_2(message);
|
||||
|
||||
if (((uint64_t*)final_s)[7] <= ((uint64_t*)pTarget)[3])
|
||||
if (((uint64_t*)message)[7] <= pTarget[3])
|
||||
{
|
||||
uint32_t tmp = atomicExch(&nonceVector[0], startNounce + thread);
|
||||
if (tmp != 0)
|
||||
@ -288,17 +246,15 @@ void bmw256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g_hash
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__host__
|
||||
void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash,uint32_t *resultnonces)
|
||||
void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces)
|
||||
{
|
||||
cudaMemset(d_GNonce[thr_id], 0x0, 2 * sizeof(uint32_t));
|
||||
const uint32_t threadsperblock = TPB;
|
||||
|
||||
// berechne wie viele Thread Blocks wir brauchen
|
||||
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||
dim3 block(threadsperblock);
|
||||
|
||||
cudaMemset(d_GNonce[thr_id], 0, 2 * sizeof(uint32_t));
|
||||
|
||||
bmw256_gpu_hash_32 << <grid, block >> >(threads, startNounce, g_hash, d_GNonce[thr_id]);
|
||||
cudaMemcpy(d_gnounce[thr_id], d_GNonce[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||
resultnonces[0] = *(d_gnounce[thr_id]);
|
||||
@ -316,5 +272,5 @@ void bmw256_cpu_init(int thr_id, uint32_t threads)
|
||||
__host__
|
||||
void bmw256_setTarget(const void *pTargetIn)
|
||||
{
|
||||
cudaMemcpyToSymbol(pTarget, pTargetIn, 8 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
|
||||
cudaMemcpyToSymbol(pTarget, pTargetIn, 32, 0, cudaMemcpyHostToDevice);
|
||||
}
|
||||
|
@ -13,7 +13,8 @@
|
||||
#define ROTATEUPWARDS11(a) LROT(a,11)
|
||||
|
||||
//#define SWAP(a,b) { uint32_t u = a; a = b; b = u; }
|
||||
#define SWAP(a,b) { a ^= b; b ^=a; a ^=b;}
|
||||
#define SWAP(a,b) { a ^= b; b ^= a; a ^= b; }
|
||||
|
||||
__device__ __forceinline__ void rrounds(uint32_t x[2][2][2][2][2])
|
||||
{
|
||||
int r;
|
||||
@ -155,7 +156,8 @@ __device__ __forceinline__ void hash_fromx(uint32_t *out, uint32_t x[2][2][2][2]
|
||||
|
||||
}
|
||||
|
||||
void __device__ __forceinline__ Update32(uint32_t x[2][2][2][2][2], const uint32_t *data)
|
||||
__device__ __forceinline__
|
||||
void Update32(uint32_t x[2][2][2][2][2], const uint32_t *data)
|
||||
{
|
||||
/* "xor the block into the first b bytes of the state" */
|
||||
/* "and then transform the state invertibly through r identical rounds" */
|
||||
@ -163,24 +165,22 @@ void __device__ __forceinline__ Update32(uint32_t x[2][2][2][2][2], const uint32
|
||||
rrounds(x);
|
||||
}
|
||||
|
||||
void __device__ __forceinline__ Update32_const(uint32_t x[2][2][2][2][2])
|
||||
__device__ __forceinline__
|
||||
void Update32_const(uint32_t x[2][2][2][2][2])
|
||||
{
|
||||
x[0][0][0][0][0] ^= 0x80;
|
||||
rrounds(x);
|
||||
}
|
||||
|
||||
|
||||
|
||||
void __device__ __forceinline__ Final(uint32_t x[2][2][2][2][2], uint32_t *hashval)
|
||||
__device__ __forceinline__
|
||||
void Final(uint32_t x[2][2][2][2][2], uint32_t *hashval)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* "the integer 1 is xored into the last state word x_11111" */
|
||||
x[1][1][1][1][1] ^= 1;
|
||||
x[1][1][1][1][1] ^= 1U;
|
||||
|
||||
/* "the state is then transformed invertibly through 10r identical rounds" */
|
||||
#pragma unroll 2
|
||||
for (i = 0; i < 10; ++i) rrounds(x);
|
||||
for (int i = 0; i < 10; ++i) rrounds(x);
|
||||
|
||||
/* "output the first h/8 bytes of the state" */
|
||||
hash_fromx(hashval, x);
|
||||
@ -198,8 +198,8 @@ void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (thread < threads)
|
||||
{
|
||||
|
||||
uint32_t Hash[8]; // = &g_hash[16 * hashPosition];
|
||||
|
||||
LOHI(Hash[0], Hash[1], __ldg(&g_hash[thread]));
|
||||
LOHI(Hash[2], Hash[3], __ldg(&g_hash[thread + 1 * threads]));
|
||||
LOHI(Hash[4], Hash[5], __ldg(&g_hash[thread + 2 * threads]));
|
||||
@ -207,19 +207,16 @@ void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g
|
||||
|
||||
uint32_t x[2][2][2][2][2] =
|
||||
{
|
||||
0xEA2BD4B4, 0xCCD6F29F, 0x63117E71,
|
||||
0x35481EAE, 0x22512D5B, 0xE5D94E63,
|
||||
0x7E624131, 0xF4CC12BE, 0xC2D0B696,
|
||||
0x42AF2070, 0xD0720C35, 0x3361DA8C,
|
||||
0x28CCECA4, 0x8EF8AD83, 0x4680AC00,
|
||||
0x40E5FBAB, 0xD89041C3, 0x6107FBD5,
|
||||
0x6C859D41, 0xF0B26679, 0x09392549,
|
||||
0x5FA25603, 0x65C892FD, 0x93CB6285,
|
||||
0x2AF2B5AE, 0x9E4B4E60, 0x774ABFDD,
|
||||
0x85254725, 0x15815AEB, 0x4AB6AAD6,
|
||||
0x9CDAF8AF, 0xD6032C0A
|
||||
|
||||
0xEA2BD4B4, 0xCCD6F29F, 0x63117E71, 0x35481EAE,
|
||||
0x22512D5B, 0xE5D94E63, 0x7E624131, 0xF4CC12BE,
|
||||
0xC2D0B696, 0x42AF2070, 0xD0720C35, 0x3361DA8C,
|
||||
0x28CCECA4, 0x8EF8AD83, 0x4680AC00, 0x40E5FBAB,
|
||||
0xD89041C3, 0x6107FBD5, 0x6C859D41, 0xF0B26679,
|
||||
0x09392549, 0x5FA25603, 0x65C892FD, 0x93CB6285,
|
||||
0x2AF2B5AE, 0x9E4B4E60, 0x774ABFDD, 0x85254725,
|
||||
0x15815AEB, 0x4AB6AAD6, 0x9CDAF8AF, 0xD6032C0A
|
||||
};
|
||||
|
||||
x[0][0][0][0][0] ^= Hash[0];
|
||||
x[0][0][0][0][1] ^= Hash[1];
|
||||
x[0][0][0][1][0] ^= Hash[2];
|
||||
@ -230,7 +227,7 @@ void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g
|
||||
x[0][0][1][1][1] ^= Hash[7];
|
||||
|
||||
rrounds(x);
|
||||
x[0][0][0][0][0] ^= 0x80;
|
||||
x[0][0][0][0][0] ^= 0x80U;
|
||||
rrounds(x);
|
||||
|
||||
Final(x, Hash);
|
||||
@ -244,17 +241,12 @@ void cubehash256_gpu_hash_32(uint32_t threads, uint32_t startNounce, uint64_t *g
|
||||
|
||||
|
||||
__host__
|
||||
void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash)
|
||||
void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order)
|
||||
{
|
||||
uint32_t tpb = 576;
|
||||
|
||||
uint32_t tpb;
|
||||
if (device_sm[device_map[thr_id]]<500)
|
||||
tpb = 576;
|
||||
else
|
||||
tpb = 576;
|
||||
// berechne wie viele Thread Blocks wir brauchen
|
||||
dim3 grid((threads + tpb-1)/tpb);
|
||||
dim3 block(tpb);
|
||||
|
||||
cubehash256_gpu_hash_32<<<grid, block>>>(threads, startNounce, d_hash);
|
||||
cubehash256_gpu_hash_32 <<<grid, block>>> (threads, startNounce, d_hash);
|
||||
}
|
||||
|
@ -1457,11 +1457,11 @@ static bool stratum_gen_work(struct stratum_ctx *sctx, struct work *work)
|
||||
case ALGO_FRESH:
|
||||
case ALGO_FUGUE256:
|
||||
case ALGO_GROESTL:
|
||||
case ALGO_LYRA2v2:
|
||||
diff_to_target(work->target, sctx->job.diff / (256.0 * opt_difficulty));
|
||||
break;
|
||||
case ALGO_KECCAK:
|
||||
case ALGO_LYRA2:
|
||||
case ALGO_LYRA2v2:
|
||||
diff_to_target(work->target, sctx->job.diff / (128.0 * opt_difficulty));
|
||||
break;
|
||||
default:
|
||||
|
@ -21,6 +21,7 @@ extern void keccak256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNo
|
||||
extern void keccak256_cpu_init(int thr_id, uint32_t threads);
|
||||
extern void skein256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||
extern void skein256_cpu_init(int thr_id, uint32_t threads);
|
||||
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash, int order);
|
||||
|
||||
extern void lyra2v2_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_outputHash, int order);
|
||||
extern void lyra2v2_cpu_init(int thr_id, uint32_t threads, uint64_t* matrix);
|
||||
@ -29,8 +30,6 @@ extern void bmw256_setTarget(const void *ptarget);
|
||||
extern void bmw256_cpu_init(int thr_id, uint32_t threads);
|
||||
extern void bmw256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *g_hash, uint32_t *resultnonces);
|
||||
|
||||
extern void cubehash256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_hash);
|
||||
|
||||
void lyra2v2_hash(void *state, const void *input)
|
||||
{
|
||||
uint32_t hashA[8], hashB[8];
|
||||
@ -117,16 +116,15 @@ extern "C" int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
|
||||
|
||||
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id]);
|
||||
cubehash256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
lyra2v2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
|
||||
cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id]);
|
||||
cubehash256_cpu_hash_32(thr_id, throughput,pdata[19], d_hash[thr_id], order++);
|
||||
|
||||
bmw256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], foundNonces);
|
||||
|
||||
if (foundNonces[0] != 0)
|
||||
{
|
||||
// CUDA_SAFE_CALL(cudaGetLastError());
|
||||
const uint32_t Htarg = ptarget[7];
|
||||
uint32_t vhash64[8];
|
||||
be32enc(&endiandata[19], foundNonces[0]);
|
||||
@ -134,16 +132,14 @@ extern "C" int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
|
||||
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget))
|
||||
{
|
||||
int res = 1;
|
||||
// check if there was some other ones...
|
||||
// check if there was another one...
|
||||
*hashes_done = pdata[19] - first_nonce + throughput;
|
||||
if (foundNonces[1] != 0)
|
||||
{
|
||||
pdata[21] = foundNonces[1];
|
||||
res++;
|
||||
if (opt_benchmark) applog(LOG_INFO, "GPU #%d Found second nounce %08x", thr_id, foundNonces[1], vhash64[7], Htarg);
|
||||
}
|
||||
pdata[19] = foundNonces[0];
|
||||
if (opt_benchmark) applog(LOG_INFO, "GPU #%d Found nounce % 08x", thr_id, foundNonces[0], vhash64[7], Htarg);
|
||||
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
|
||||
return res;
|
||||
}
|
||||
@ -156,7 +152,7 @@ extern "C" int scanhash_lyra2v2(int thr_id, uint32_t *pdata,
|
||||
|
||||
pdata[19] += throughput;
|
||||
|
||||
} while (!work_restart[thr_id].restart && ((uint64_t)max_nonce > ((uint64_t)(pdata[19]) + (uint64_t)throughput)));
|
||||
} while (!work_restart[thr_id].restart && (max_nonce > ((uint64_t)(pdata[19]) + throughput)));
|
||||
|
||||
*hashes_done = pdata[19] - first_nonce + 1;
|
||||
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
|
||||
|
Loading…
Reference in New Issue
Block a user