Merged skeincoin algo for SM5+ devices

Should give same or better than SP and klaus versions

Keep old code for older devices and skein2 compat

Linux perf: 750Ti 78MH/s and GTX 970 260MH/s

Signed-off-by: Tanguy Pruvot <tanguy.pruvot@gmail.com>
This commit is contained in:
Tanguy Pruvot 2015-05-12 21:04:22 +02:00
parent 3955eb7a1d
commit 4c3892f268
5 changed files with 789 additions and 18 deletions

View File

@ -42,7 +42,7 @@ ccminer_SOURCES = elist.h miner.h compat.h \
quark/quarkcoin.cu quark/animecoin.cu \
quark/cuda_quark_compactionTest.cu \
neoscrypt/neoscrypt.cpp neoscrypt/neoscrypt-cpu.c neoscrypt/cuda_neoscrypt.cu \
cuda_nist5.cu pentablake.cu skein.cu skein2.cpp zr5.cu \
cuda_nist5.cu pentablake.cu skein.cu cuda_skeincoin.cu skein2.cpp zr5.cu \
sph/bmw.c sph/blake.c sph/groestl.c sph/jh.c sph/keccak.c sph/skein.c \
sph/cubehash.c sph/echo.c sph/luffa.c sph/sha2.c sph/shavite.c sph/simd.c \
sph/hamsi.c sph/hamsi_helper.c sph/sph_hamsi.h \

View File

@ -465,6 +465,9 @@
<CudaCompile Include="skein.cu">
<MaxRegCount>64</MaxRegCount>
</CudaCompile>
<CudaCompile Include="cuda_skeincoin.cu">
<MaxRegCount>48</MaxRegCount>
</CudaCompile>
<CudaCompile Include="x11\cuda_x11_aes.cu">
<ExcludedFromBuild>true</ExcludedFromBuild>
</CudaCompile>

View File

@ -604,6 +604,9 @@
<CudaCompile Include="skein.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="cuda_skeincoin.cu">
<Filter>Source Files\CUDA</Filter>
</CudaCompile>
<CudaCompile Include="scrypt\blake.cu">
<Filter>Source Files\CUDA\scrypt</Filter>
</CudaCompile>
@ -653,4 +656,4 @@
<Filter>Ressources</Filter>
</Text>
</ItemGroup>
</Project>
</Project>

742
cuda_skeincoin.cu Normal file
View File

@ -0,0 +1,742 @@
/* Merged skein512 80 + sha256 64 (in a single kernel) for SM 5+
* based on sp and klaus work, adapted by tpruvot to keep skein2 compat
*/
#include <stdint.h>
#include <stdio.h>
#include <memory.h>
#include "cuda_helper.h"
/* try 1024 for 970+ */
#define TPB 512
static __constant__ uint64_t c_message16[2];
static __constant__ uint2 precalcvalues[9];
static uint32_t *d_found[MAX_GPUS];
static __device__ __forceinline__ uint2 vectorizelow(uint32_t v) {
uint2 result;
result.x = v;
result.y = 0;
return result;
}
static __device__ __forceinline__ uint2 vectorizehigh(uint32_t v) {
uint2 result;
result.x = 0;
result.y = v;
return result;
}
/*
* M9_ ## s ## _ ## i evaluates to s+i mod 9 (0 <= s <= 18, 0 <= i <= 7).
*/
#define M9_0_0 0
#define M9_0_1 1
#define M9_0_2 2
#define M9_0_3 3
#define M9_0_4 4
#define M9_0_5 5
#define M9_0_6 6
#define M9_0_7 7
#define M9_1_0 1
#define M9_1_1 2
#define M9_1_2 3
#define M9_1_3 4
#define M9_1_4 5
#define M9_1_5 6
#define M9_1_6 7
#define M9_1_7 8
#define M9_2_0 2
#define M9_2_1 3
#define M9_2_2 4
#define M9_2_3 5
#define M9_2_4 6
#define M9_2_5 7
#define M9_2_6 8
#define M9_2_7 0
#define M9_3_0 3
#define M9_3_1 4
#define M9_3_2 5
#define M9_3_3 6
#define M9_3_4 7
#define M9_3_5 8
#define M9_3_6 0
#define M9_3_7 1
#define M9_4_0 4
#define M9_4_1 5
#define M9_4_2 6
#define M9_4_3 7
#define M9_4_4 8
#define M9_4_5 0
#define M9_4_6 1
#define M9_4_7 2
#define M9_5_0 5
#define M9_5_1 6
#define M9_5_2 7
#define M9_5_3 8
#define M9_5_4 0
#define M9_5_5 1
#define M9_5_6 2
#define M9_5_7 3
#define M9_6_0 6
#define M9_6_1 7
#define M9_6_2 8
#define M9_6_3 0
#define M9_6_4 1
#define M9_6_5 2
#define M9_6_6 3
#define M9_6_7 4
#define M9_7_0 7
#define M9_7_1 8
#define M9_7_2 0
#define M9_7_3 1
#define M9_7_4 2
#define M9_7_5 3
#define M9_7_6 4
#define M9_7_7 5
#define M9_8_0 8
#define M9_8_1 0
#define M9_8_2 1
#define M9_8_3 2
#define M9_8_4 3
#define M9_8_5 4
#define M9_8_6 5
#define M9_8_7 6
#define M9_9_0 0
#define M9_9_1 1
#define M9_9_2 2
#define M9_9_3 3
#define M9_9_4 4
#define M9_9_5 5
#define M9_9_6 6
#define M9_9_7 7
#define M9_10_0 1
#define M9_10_1 2
#define M9_10_2 3
#define M9_10_3 4
#define M9_10_4 5
#define M9_10_5 6
#define M9_10_6 7
#define M9_10_7 8
#define M9_11_0 2
#define M9_11_1 3
#define M9_11_2 4
#define M9_11_3 5
#define M9_11_4 6
#define M9_11_5 7
#define M9_11_6 8
#define M9_11_7 0
#define M9_12_0 3
#define M9_12_1 4
#define M9_12_2 5
#define M9_12_3 6
#define M9_12_4 7
#define M9_12_5 8
#define M9_12_6 0
#define M9_12_7 1
#define M9_13_0 4
#define M9_13_1 5
#define M9_13_2 6
#define M9_13_3 7
#define M9_13_4 8
#define M9_13_5 0
#define M9_13_6 1
#define M9_13_7 2
#define M9_14_0 5
#define M9_14_1 6
#define M9_14_2 7
#define M9_14_3 8
#define M9_14_4 0
#define M9_14_5 1
#define M9_14_6 2
#define M9_14_7 3
#define M9_15_0 6
#define M9_15_1 7
#define M9_15_2 8
#define M9_15_3 0
#define M9_15_4 1
#define M9_15_5 2
#define M9_15_6 3
#define M9_15_7 4
#define M9_16_0 7
#define M9_16_1 8
#define M9_16_2 0
#define M9_16_3 1
#define M9_16_4 2
#define M9_16_5 3
#define M9_16_6 4
#define M9_16_7 5
#define M9_17_0 8
#define M9_17_1 0
#define M9_17_2 1
#define M9_17_3 2
#define M9_17_4 3
#define M9_17_5 4
#define M9_17_6 5
#define M9_17_7 6
#define M9_18_0 0
#define M9_18_1 1
#define M9_18_2 2
#define M9_18_3 3
#define M9_18_4 4
#define M9_18_5 5
#define M9_18_6 6
#define M9_18_7 7
/*
* M3_ ## s ## _ ## i evaluates to s+i mod 3 (0 <= s <= 18, 0 <= i <= 1).
*/
#define M3_0_0 0
#define M3_0_1 1
#define M3_1_0 1
#define M3_1_1 2
#define M3_2_0 2
#define M3_2_1 0
#define M3_3_0 0
#define M3_3_1 1
#define M3_4_0 1
#define M3_4_1 2
#define M3_5_0 2
#define M3_5_1 0
#define M3_6_0 0
#define M3_6_1 1
#define M3_7_0 1
#define M3_7_1 2
#define M3_8_0 2
#define M3_8_1 0
#define M3_9_0 0
#define M3_9_1 1
#define M3_10_0 1
#define M3_10_1 2
#define M3_11_0 2
#define M3_11_1 0
#define M3_12_0 0
#define M3_12_1 1
#define M3_13_0 1
#define M3_13_1 2
#define M3_14_0 2
#define M3_14_1 0
#define M3_15_0 0
#define M3_15_1 1
#define M3_16_0 1
#define M3_16_1 2
#define M3_17_0 2
#define M3_17_1 0
#define M3_18_0 0
#define M3_18_1 1
#define XCAT(x, y) XCAT_(x, y)
#define XCAT_(x, y) x ## y
#define SKBI(k, s, i) XCAT(k, XCAT(XCAT(XCAT(M9_, s), _), i))
#define SKBT(t, s, v) XCAT(t, XCAT(XCAT(XCAT(M3_, s), _), v))
#define TFBIG_KINIT_UI2(k0, k1, k2, k3, k4, k5, k6, k7, k8, t0, t1, t2) { \
k8 = ((k0 ^ k1) ^ (k2 ^ k3)) ^ ((k4 ^ k5) ^ (k6 ^ k7)) \
^ vectorize(SPH_C64(0x1BD11BDAA9FC1A22)); \
t2 = t0 ^ t1; \
}
#define TFBIG_ADDKEY_UI2(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + vectorize(s)); \
}
#define TFBIG_MIX_UI2(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROL2(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_UI2(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_UI2(w0, w1, rc0); \
TFBIG_MIX_UI2(w2, w3, rc1); \
TFBIG_MIX_UI2(w4, w5, rc2); \
TFBIG_MIX_UI2(w6, w7, rc3); \
}
#define TFBIG_4e_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_UI2(s) { \
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_UI2(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_UI2(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_UI2(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* precalc */
#define TFBIG_ADDKEY_PRE(w0, w1, w2, w3, w4, w5, w6, w7, k, t, s) { \
w0 = (w0 + SKBI(k, s, 0)); \
w1 = (w1 + SKBI(k, s, 1)); \
w2 = (w2 + SKBI(k, s, 2)); \
w3 = (w3 + SKBI(k, s, 3)); \
w4 = (w4 + SKBI(k, s, 4)); \
w5 = (w5 + SKBI(k, s, 5) + SKBT(t, s, 0)); \
w6 = (w6 + SKBI(k, s, 6) + SKBT(t, s, 1)); \
w7 = (w7 + SKBI(k, s, 7) + (s)); \
}
#define TFBIG_MIX_PRE(x0, x1, rc) { \
x0 = x0 + x1; \
x1 = ROTL64(x1, rc) ^ x0; \
}
#define TFBIG_MIX8_PRE(w0, w1, w2, w3, w4, w5, w6, w7, rc0, rc1, rc2, rc3) { \
TFBIG_MIX_PRE(w0, w1, rc0); \
TFBIG_MIX_PRE(w2, w3, rc1); \
TFBIG_MIX_PRE(w4, w5, rc2); \
TFBIG_MIX_PRE(w6, w7, rc3); \
}
#define TFBIG_4e_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 46, 36, 19, 37); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 33, 27, 14, 42); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 17, 49, 36, 39); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 44, 9, 54, 56); \
}
#define TFBIG_4o_PRE(s) { \
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, s); \
TFBIG_MIX8_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], 39, 30, 34, 24); \
TFBIG_MIX8_PRE(p[2], p[1], p[4], p[7], p[6], p[5], p[0], p[3], 13, 50, 10, 17); \
TFBIG_MIX8_PRE(p[4], p[1], p[6], p[3], p[0], p[5], p[2], p[7], 25, 29, 39, 43); \
TFBIG_MIX8_PRE(p[6], p[1], p[0], p[7], p[2], p[5], p[4], p[3], 8, 35, 56, 22); \
}
/* Elementary defines for SHA256 */
#define SWAB32(x) cuda_swab32(x)
#define R(x, n) ((x) >> (n))
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
#define s1(x) (ROTR32(x,17) ^ ROTR32(x, 19) ^ R(x, 10))
static __device__ __constant__ uint32_t sha256_hashTable[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
// precomputed table
static __constant__ uint32_t sha256_endingTable[64] = {
0xc28a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf374,
0x649b69c1, 0xf0fe4786, 0x0fe1edc6, 0x240cf254, 0x4fe9346f, 0x6cc984be, 0x61b9411e, 0x16f988fa,
0xf2c65152, 0xa88e5a6d, 0xb019fc65, 0xb9d99ec7, 0x9a1231c3, 0xe70eeaa0, 0xfdb1232b, 0xc7353eb0,
0x3069bad5, 0xcb976d5f, 0x5a0f118f, 0xdc1eeefd, 0x0a35b689, 0xde0b7a04, 0x58f4ca9d, 0xe15d5b16,
0x007f3e86, 0x37088980, 0xa507ea32, 0x6fab9537, 0x17406110, 0x0d8cd6f1, 0xcdaa3b6d, 0xc0bbbe37,
0x83613bda, 0xdb48a363, 0x0b02e931, 0x6fd15ca7, 0x521afaca, 0x31338431, 0x6ed41a95, 0x6d437890,
0xc39c91f2, 0x9eccabbd, 0xb5c9a0e6, 0x532fb63c, 0xd2c741c6, 0x07237ea3, 0xa4954b68, 0x4c191d76
};
static __constant__ uint32_t sha256_constantTable[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};
__global__ __launch_bounds__(TPB)
void skeincoin_gpu_hash_50(uint32_t threads, uint32_t startNounce, uint32_t* d_found, uint64_t target64, int swap)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint2 h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint2 t0, t1, t2;
uint2 p[8];
h0 = precalcvalues[0];
h1 = precalcvalues[1];
h2 = precalcvalues[2];
h3 = precalcvalues[3];
h4 = precalcvalues[4];
h5 = precalcvalues[5];
h6 = precalcvalues[6];
h7 = precalcvalues[7];
t2 = precalcvalues[8];
const uint32_t nonce = startNounce + thread;
const uint2 nonce2 = make_uint2(_LODWORD(c_message16[1]), swap ? cuda_swab32(nonce) : nonce);
// skein_big_close -> etype = 0x160, ptr = 16, bcount = 1, extra = 16
p[0] = vectorize(c_message16[0]);
p[1] = nonce2;
#pragma unroll
for (int i = 2; i < 8; i++)
p[i] = make_uint2(0, 0);
t0 = vectorizelow(0x50ull); // SPH_T64(bcount << 6) + (sph_u64)(extra);
t1 = vectorizehigh(0xB0000000ul); // (bcount >> 58) + ((sph_u64)(etype) << 55);
TFBIG_KINIT_UI2(h0, h1, h2, h3, h4, h5, h6, h7, h8, t0, t1, t2);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
t0 = vectorizelow(8); // extra
t1 = vectorizehigh(0xFF000000ul); // etype
h0 = vectorize(c_message16[0]) ^ p[0];
h1 = nonce2 ^ p[1];
h2 = p[2];
h3 = p[3];
h4 = p[4];
h5 = p[5];
h6 = p[6];
h7 = p[7];
h8 = h0 ^ h1 ^ p[2] ^ p[3] ^ p[4] ^ p[5] ^ p[6] ^ p[7] ^ vectorize(0x1BD11BDAA9FC1A22);
t2 = vectorize(0xFF00000000000008ull);
// p[8] = { 0 };
#pragma unroll 8
for (int i = 0; i<8; i++)
p[i] = make_uint2(0, 0);
TFBIG_4e_UI2(0);
TFBIG_4o_UI2(1);
TFBIG_4e_UI2(2);
TFBIG_4o_UI2(3);
TFBIG_4e_UI2(4);
TFBIG_4o_UI2(5);
TFBIG_4e_UI2(6);
TFBIG_4o_UI2(7);
TFBIG_4e_UI2(8);
TFBIG_4o_UI2(9);
TFBIG_4e_UI2(10);
TFBIG_4o_UI2(11);
TFBIG_4e_UI2(12);
TFBIG_4o_UI2(13);
TFBIG_4e_UI2(14);
TFBIG_4o_UI2(15);
TFBIG_4e_UI2(16);
TFBIG_4o_UI2(17);
TFBIG_ADDKEY_UI2(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint32_t *message = (uint32_t *)p;
uint32_t regs[8];
uint32_t hash[8];
// Init with Hash-Table
#pragma unroll 8
for (int k = 0; k < 8; k++) {
hash[k] = regs[k] = sha256_hashTable[k];
}
uint32_t W1[16];
uint32_t W2[16];
#pragma unroll 16
for (int k = 0; k<16; k++)
W1[k] = SWAB32(message[k]);
// Progress W1
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k = 6; k >= 0; k--) regs[k + 1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
// Progress W2...W3
////// PART 1
#pragma unroll 2
for (int j = 0; j<2; j++)
W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 16] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 2
#pragma unroll 2
for (int j = 0; j<2; j++)
W1[j] = s1(W2[14 + j]) + W2[9 + j] + s0(W2[1 + j]) + W2[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W1[j] = s1(W1[j - 2]) + W2[9 + j] + s0(W2[1 + j]) + W2[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W1[j] = s1(W1[j - 2]) + W1[j - 7] + s0(W2[1 + j]) + W2[j];
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 32] + W1[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
////// PART 3
#pragma unroll 2
for (int j = 0; j<2; j++)
W2[j] = s1(W1[14 + j]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 5
for (int j = 2; j<7; j++)
W2[j] = s1(W2[j - 2]) + W1[9 + j] + s0(W1[1 + j]) + W1[j];
#pragma unroll 8
for (int j = 7; j<15; j++)
W2[j] = s1(W2[j - 2]) + W2[j - 7] + s0(W1[1 + j]) + W1[j];
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
// Round function
#pragma unroll 16
for (int j = 0; j<16; j++)
{
uint32_t T1, T2;
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_constantTable[j + 48] + W2[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int l = 6; l >= 0; l--) regs[l + 1] = regs[l];
regs[0] = T1 + T2;
regs[4] += T1;
}
#pragma unroll 8
for (int k = 0; k<8; k++)
hash[k] += regs[k];
/////
///// Second Pass (ending)
/////
#pragma unroll 8
for (int k = 0; k<8; k++)
regs[k] = hash[k];
// Progress W1
uint32_t T1, T2;
#pragma unroll 1
for (int j = 0; j<56; j++)//62
{
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + sha256_endingTable[j];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
#pragma unroll 7
for (int k = 6; k >= 0; k--)
regs[k + 1] = regs[k];
regs[0] = T1 + T2;
regs[4] += T1;
}
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6])+sha256_endingTable[56];
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
regs[7] = T1 + T2;
regs[3] += T1;
T1 = regs[6] + S1(regs[3]) + Ch(regs[3], regs[4], regs[5]) + sha256_endingTable[57];
T2 = S0(regs[7]) + Maj(regs[7], regs[0], regs[1]);
regs[6] = T1 + T2;
regs[2] += T1;
//************
regs[1] += regs[5] + S1(regs[2]) + Ch(regs[2], regs[3], regs[4]) + sha256_endingTable[58];
regs[0] += regs[4] + S1(regs[1]) + Ch(regs[1], regs[2], regs[3]) + sha256_endingTable[59];
regs[7] += regs[3] + S1(regs[0]) + Ch(regs[0], regs[1], regs[2]) + sha256_endingTable[60];
regs[6] += regs[2] + S1(regs[7]) + Ch(regs[7], regs[0], regs[1]) + sha256_endingTable[61];
uint64_t test = SWAB32(hash[7] + regs[7]);
test <<= 32;
test|= SWAB32(hash[6] + regs[6]);
if (test <= target64)
{
uint32_t tmp = atomicExch(&(d_found[0]), startNounce + thread);
if (tmp != UINT32_MAX)
d_found[1] = tmp;
}
}
}
__host__
static void precalc(uint64_t* message)
{
uint64_t h0, h1, h2, h3, h4, h5, h6, h7, h8;
uint64_t t0, t1, t2;
h0 = 0x4903ADFF749C51CEull;
h1 = 0x0D95DE399746DF03ull;
h2 = 0x8FD1934127C79BCEull;
h3 = 0x9A255629FF352CB1ull;
h4 = 0x5DB62599DF6CA7B0ull;
h5 = 0xEABE394CA9D5C3F4ull;
h6 = 0x991112C71A75B523ull;
h7 = 0xAE18A40B660FCC33ull;
//h8 = h0 ^ h1 ^ h2 ^ h3 ^ h4 ^ h5 ^ h6 ^ h7 ^ SPH_C64(0x1BD11BDAA9FC1A22);
h8 = 0xcab2076d98173ec4ULL;
t0 = 64; // ptr
t1 = 0x7000000000000000ull;
t2 = 0x7000000000000040ull;
uint64_t p[8];
for (int i = 0; i<8; i++)
p[i] = message[i];
TFBIG_4e_PRE(0);
TFBIG_4o_PRE(1);
TFBIG_4e_PRE(2);
TFBIG_4o_PRE(3);
TFBIG_4e_PRE(4);
TFBIG_4o_PRE(5);
TFBIG_4e_PRE(6);
TFBIG_4o_PRE(7);
TFBIG_4e_PRE(8);
TFBIG_4o_PRE(9);
TFBIG_4e_PRE(10);
TFBIG_4o_PRE(11);
TFBIG_4e_PRE(12);
TFBIG_4o_PRE(13);
TFBIG_4e_PRE(14);
TFBIG_4o_PRE(15);
TFBIG_4e_PRE(16);
TFBIG_4o_PRE(17);
TFBIG_ADDKEY_PRE(p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], h, t, 18);
uint64_t buffer[9];
buffer[0] = message[0] ^ p[0];
buffer[1] = message[1] ^ p[1];
buffer[2] = message[2] ^ p[2];
buffer[3] = message[3] ^ p[3];
buffer[4] = message[4] ^ p[4];
buffer[5] = message[5] ^ p[5];
buffer[6] = message[6] ^ p[6];
buffer[7] = message[7] ^ p[7];
buffer[8] = t2;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(precalcvalues, buffer, sizeof(buffer), 0, cudaMemcpyHostToDevice));
}
__host__
void skeincoin_init(int thr_id)
{
cuda_get_arch(thr_id);
}
__host__
void skeincoin_setBlock_80(int thr_id, void *pdata)
{
uint64_t message[16];
memcpy(&message[0], pdata, 80);
CUDA_SAFE_CALL(cudaMalloc(&(d_found[thr_id]), 2 * sizeof(uint32_t)));
cudaMemcpyToSymbol(c_message16, &message[8], 16, 0, cudaMemcpyHostToDevice);
precalc(message);
}
__host__
uint32_t skeincoin_hash_sm5(int thr_id, uint32_t threads, uint32_t startNounce, int swap, uint64_t target64, uint32_t *secNonce)
{
uint32_t h_found[2];
uint32_t threadsperblock = TPB;
dim3 block(threadsperblock);
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
memset(h_found, 0xff, sizeof(h_found));
cudaMemset(d_found[thr_id], 0xff, 2 * sizeof(uint32_t));
skeincoin_gpu_hash_50 <<< grid, block >>> (threads, startNounce, d_found[thr_id], target64, swap);
cudaMemcpy(h_found, d_found[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
if (h_found[1] && h_found[1] != UINT32_MAX && h_found[1] != h_found[0])
*secNonce = h_found[1];
return h_found[0];
}

View File

@ -13,10 +13,13 @@
static uint32_t *d_hash[MAX_GPUS];
extern void quark_skein512_cpu_init(int thr_id, uint32_t threads);
extern void skein512_cpu_setBlock_80(void *pdata);
extern void skein512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash, int swap);
extern void skeincoin_init(int thr_id);
extern void skeincoin_setBlock_80(int thr_id, void *pdata);
extern uint32_t skeincoin_hash_sm5(int thr_id, uint32_t threads, uint32_t startNounce, int swap, uint64_t target64, uint32_t *secNonce);
static __device__ __constant__ uint32_t sha256_hashTable[] = {
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
};
@ -351,22 +354,29 @@ extern "C" int scanhash_skeincoin(int thr_id, uint32_t *pdata, const uint32_t *p
const uint32_t first_nonce = pdata[19];
const int swap = 1;
uint32_t throughput = device_intensity(thr_id, __func__, 1 << 19); // 256*256*8
bool sm5 = (device_sm[device_map[thr_id]] >= 500);
uint32_t throughput = device_intensity(thr_id, __func__, 1U << 20);
throughput = min(throughput, (max_nonce - first_nonce));
uint32_t foundNonce, secNonce = 0;
uint64_t target64;
if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x07;
((uint32_t*)ptarget)[7] = 0x03;
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
cudaMalloc(&d_hash[thr_id], throughput * 64U);
quark_skein512_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaDeviceSynchronize());
if (sm5) {
skeincoin_init(thr_id);
} else {
cudaMalloc(&d_hash[thr_id], throughput * 64U);
quark_skein512_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaDeviceSynchronize());
}
init[thr_id] = true;
}
@ -374,17 +384,28 @@ extern "C" int scanhash_skeincoin(int thr_id, uint32_t *pdata, const uint32_t *p
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
skein512_cpu_setBlock_80((void*)endiandata);
cuda_check_cpu_setTarget(ptarget);
if (sm5) {
skeincoin_setBlock_80(thr_id, (void*)endiandata);
target64 = ((uint64_t*)ptarget)[3];
} else {
skein512_cpu_setBlock_80((void*)endiandata);
cuda_check_cpu_setTarget(ptarget);
}
do {
// Hash with CUDA
skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], swap);
sha2_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id]);
*hashes_done = pdata[19] - first_nonce + throughput;
uint32_t foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
if (sm5) {
/* cuda_skeincoin.cu */
foundNonce = skeincoin_hash_sm5(thr_id, throughput, pdata[19], swap, target64, &secNonce);
} else {
/* quark/cuda_skein512.cu */
skein512_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], swap);
sha2_cpu_hash_64(thr_id, throughput, pdata[19], d_hash[thr_id]);
foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
}
if (foundNonce != UINT32_MAX)
{
uint32_t _ALIGN(64) vhash64[8];
@ -395,7 +416,9 @@ extern "C" int scanhash_skeincoin(int thr_id, uint32_t *pdata, const uint32_t *p
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
int res = 1;
uint8_t num = res;
uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], num);
if (!sm5) {
secNonce = cuda_check_hash_suppl(thr_id, throughput, pdata[19], d_hash[thr_id], num);
}
while (secNonce != 0 && res < 2) /* todo: up to 6 */
{
endiandata[19] = swab32_if(secNonce, swap);