myr-gr: remove unused allocated memory + pascal tweak
+ cleanup...
This commit is contained in:
parent
39d0e42b11
commit
3fe4dda4c1
@ -5,6 +5,11 @@
|
||||
|
||||
#include "cuda_helper.h"
|
||||
|
||||
#ifdef __INTELLISENSE__
|
||||
#define __CUDA_ARCH__ 500
|
||||
#define __funnelshift_r(x,y,n) (x >> n)
|
||||
#endif
|
||||
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
// 64 Registers Variant for Compute 3.0
|
||||
#include "quark/groestl_functions_quad.h"
|
||||
@ -21,238 +26,240 @@ __constant__ uint32_t myriadgroestl_gpu_msg[32];
|
||||
// muss expandiert werden
|
||||
__constant__ uint32_t myr_sha256_gpu_constantTable[64];
|
||||
__constant__ uint32_t myr_sha256_gpu_constantTable2[64];
|
||||
__constant__ uint32_t myr_sha256_gpu_hashTable[8];
|
||||
|
||||
uint32_t myr_sha256_cpu_hashTable[] = {
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
|
||||
uint32_t myr_sha256_cpu_constantTable[] = {
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
|
||||
const uint32_t myr_sha256_cpu_constantTable[] = {
|
||||
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2,
|
||||
};
|
||||
|
||||
uint32_t myr_sha256_cpu_w2Table[] = {
|
||||
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
|
||||
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
|
||||
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
|
||||
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
|
||||
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
|
||||
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
|
||||
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484 };
|
||||
const uint32_t myr_sha256_cpu_w2Table[] = {
|
||||
0x80000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
||||
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
|
||||
0x80000000, 0x01400000, 0x00205000, 0x00005088, 0x22000800, 0x22550014, 0x05089742, 0xa0000020,
|
||||
0x5a880000, 0x005c9400, 0x0016d49d, 0xfa801f00, 0xd33225d0, 0x11675959, 0xf6e6bfda, 0xb30c1549,
|
||||
0x08b2b050, 0x9d7c4c27, 0x0ce2a393, 0x88e6e1ea, 0xa52b4335, 0x67a16f49, 0xd732016f, 0x4eeb2e91,
|
||||
0x5dbf55e5, 0x8eee2335, 0xe2bc5ec2, 0xa83f4394, 0x45ad78f7, 0x36f3d0cd, 0xd99c05e8, 0xb0511dc7,
|
||||
0x69bc7ac4, 0xbd11375b, 0xe3ba71e5, 0x3b209ff2, 0x18feee17, 0xe25ad9e7, 0x13375046, 0x0515089d,
|
||||
0x4f0d0f04, 0x2627484e, 0x310128d2, 0xc668b434, 0x420841cc, 0x62d311b8, 0xe59ba771, 0x85a7a484
|
||||
};
|
||||
|
||||
#define SWAB32(x) ( ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) | ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24) )
|
||||
#define SWAB32(x) cuda_swab32(x)
|
||||
|
||||
#if __CUDA_ARCH__ < 320
|
||||
// Kepler (Compute 3.0)
|
||||
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
||||
// Kepler (Compute 3.0)
|
||||
#define ROTR32(x, n) (((x) >> (n)) | ((x) << (32 - (n))))
|
||||
#else
|
||||
// Kepler (Compute 3.5)
|
||||
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
|
||||
// Kepler (Compute 3.5)
|
||||
#define ROTR32(x, n) __funnelshift_r( (x), (x), (n) )
|
||||
#endif
|
||||
#define R(x, n) ((x) >> (n))
|
||||
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
||||
|
||||
#define R(x, n) ((x) >> (n))
|
||||
#define Ch(x, y, z) ((x & (y ^ z)) ^ z)
|
||||
#define Maj(x, y, z) ((x & (y | z)) | (y & z))
|
||||
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
|
||||
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
|
||||
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
|
||||
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
|
||||
#define S0(x) (ROTR32(x, 2) ^ ROTR32(x, 13) ^ ROTR32(x, 22))
|
||||
#define S1(x) (ROTR32(x, 6) ^ ROTR32(x, 11) ^ ROTR32(x, 25))
|
||||
#define s0(x) (ROTR32(x, 7) ^ ROTR32(x, 18) ^ R(x, 3))
|
||||
#define s1(x) (ROTR32(x, 17) ^ ROTR32(x, 19) ^ R(x, 10))
|
||||
|
||||
__device__ void myriadgroestl_gpu_sha256(uint32_t *message)
|
||||
{
|
||||
uint32_t W1[16];
|
||||
uint32_t W2[16];
|
||||
uint32_t regs[8], hash[8];
|
||||
const uint32_t myr_sha256_gpu_hashTable[8] = {
|
||||
0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19
|
||||
};
|
||||
|
||||
// Initialisiere die register a bis h mit der Hash-Tabelle
|
||||
uint32_t regs[8];
|
||||
uint32_t hash[8];
|
||||
// pre
|
||||
#pragma unroll 8
|
||||
for (int k=0; k < 8; k++)
|
||||
{
|
||||
regs[k] = myr_sha256_gpu_hashTable[k];
|
||||
hash[k] = regs[k];
|
||||
}
|
||||
|
||||
// pre
|
||||
#pragma unroll 8
|
||||
for (int k=0; k < 8; k++)
|
||||
{
|
||||
regs[k] = myr_sha256_gpu_hashTable[k];
|
||||
hash[k] = regs[k];
|
||||
}
|
||||
uint32_t W1[16];
|
||||
#pragma unroll 16
|
||||
for(int k=0; k<16; k++)
|
||||
W1[k] = SWAB32(message[k]);
|
||||
|
||||
#pragma unroll 16
|
||||
for(int k=0;k<16;k++)
|
||||
W1[k] = SWAB32(message[k]);
|
||||
// Progress W1
|
||||
#pragma unroll 16
|
||||
for(int j=0; j<16; j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
|
||||
// Progress W1
|
||||
#pragma unroll 16
|
||||
for(int j=0;j<16;j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j] + W1[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
#pragma unroll 7
|
||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
|
||||
#pragma unroll 7
|
||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
// Progress W2...W3
|
||||
uint32_t W2[16];
|
||||
|
||||
// Progress W2...W3
|
||||
////// PART 1
|
||||
#pragma unroll 2
|
||||
for(int j=0;j<2;j++)
|
||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2;j<7;j++)
|
||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
////// PART 1
|
||||
#pragma unroll 2
|
||||
for(int j=0; j<2; j++)
|
||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
|
||||
#pragma unroll 8
|
||||
for(int j=7;j<15;j++)
|
||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2;j<7;j++)
|
||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
|
||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||
#pragma unroll 8
|
||||
for(int j=7; j<15; j++)
|
||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||
|
||||
// Rundenfunktion
|
||||
#pragma unroll 16
|
||||
for(int j=0;j<16;j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
// Round function
|
||||
#pragma unroll 16
|
||||
for(int j=0; j<16; j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 16] + W2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
|
||||
////// PART 2
|
||||
#pragma unroll 2
|
||||
for(int j=0;j<2;j++)
|
||||
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2;j<7;j++)
|
||||
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
|
||||
#pragma unroll 8
|
||||
for(int j=7;j<15;j++)
|
||||
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
|
||||
////// PART 2
|
||||
#pragma unroll 2
|
||||
for(int j=0; j<2; j++)
|
||||
W1[j] = s1(W2[14+j]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2; j<7; j++)
|
||||
W1[j] = s1(W1[j-2]) + W2[9+j] + s0(W2[1+j]) + W2[j];
|
||||
|
||||
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
|
||||
#pragma unroll 8
|
||||
for(int j=7; j<15; j++)
|
||||
W1[j] = s1(W1[j-2]) + W1[j-7] + s0(W2[1+j]) + W2[j];
|
||||
|
||||
// Rundenfunktion
|
||||
#pragma unroll 16
|
||||
for(int j=0;j<16;j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
W1[15] = s1(W1[13]) + W1[8] + s0(W1[0]) + W2[15];
|
||||
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
// Round function
|
||||
#pragma unroll 16
|
||||
for(int j=0; j<16; j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 32] + W1[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
|
||||
////// PART 3
|
||||
#pragma unroll 2
|
||||
for(int j=0;j<2;j++)
|
||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2;j<7;j++)
|
||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
|
||||
#pragma unroll 8
|
||||
for(int j=7;j<15;j++)
|
||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||
////// PART 3
|
||||
#pragma unroll 2
|
||||
for(int j=0; j<2; j++)
|
||||
W2[j] = s1(W1[14+j]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
#pragma unroll 5
|
||||
for(int j=2; j<7; j++)
|
||||
W2[j] = s1(W2[j-2]) + W1[9+j] + s0(W1[1+j]) + W1[j];
|
||||
|
||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||
#pragma unroll 8
|
||||
for(int j=7; j<15; j++)
|
||||
W2[j] = s1(W2[j-2]) + W2[j-7] + s0(W1[1+j]) + W1[j];
|
||||
|
||||
// Rundenfunktion
|
||||
#pragma unroll 16
|
||||
for(int j=0;j<16;j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
W2[15] = s1(W2[13]) + W2[8] + s0(W2[0]) + W1[15];
|
||||
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
// Round function
|
||||
#pragma unroll 16
|
||||
for(int j=0; j<16; j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable[j + 48] + W2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
|
||||
#pragma unroll 8
|
||||
for(int k=0;k<8;k++)
|
||||
hash[k] += regs[k];
|
||||
#pragma unroll 7
|
||||
for (int l=6; l >= 0; l--) regs[l+1] = regs[l];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
|
||||
/////
|
||||
///// Zweite Runde (wegen Msg-Padding)
|
||||
/////
|
||||
#pragma unroll 8
|
||||
for(int k=0;k<8;k++)
|
||||
regs[k] = hash[k];
|
||||
#pragma unroll 8
|
||||
for(int k=0; k<8; k++)
|
||||
hash[k] += regs[k];
|
||||
|
||||
// Progress W1
|
||||
#pragma unroll 64
|
||||
for(int j=0;j<64;j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
/////
|
||||
///// 2nd Round (wegen Msg-Padding)
|
||||
/////
|
||||
#pragma unroll 8
|
||||
for(int k=0; k<8; k++)
|
||||
regs[k] = hash[k];
|
||||
|
||||
#pragma unroll 7
|
||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
// Progress W1
|
||||
#pragma unroll 64
|
||||
for(int j=0; j<64; j++)
|
||||
{
|
||||
uint32_t T1, T2;
|
||||
T1 = regs[7] + S1(regs[4]) + Ch(regs[4], regs[5], regs[6]) + myr_sha256_gpu_constantTable2[j];
|
||||
T2 = S0(regs[0]) + Maj(regs[0], regs[1], regs[2]);
|
||||
|
||||
#pragma unroll 8
|
||||
for(int k=0;k<8;k++)
|
||||
hash[k] += regs[k];
|
||||
#pragma unroll 7
|
||||
for (int k=6; k >= 0; k--) regs[k+1] = regs[k];
|
||||
regs[0] = T1 + T2;
|
||||
regs[4] += T1;
|
||||
}
|
||||
|
||||
//// FERTIG
|
||||
#pragma unroll 8
|
||||
for(int k=0; k<8; k++)
|
||||
hash[k] += regs[k];
|
||||
|
||||
#pragma unroll 8
|
||||
for(int k=0;k<8;k++)
|
||||
message[k] = SWAB32(hash[k]);
|
||||
//// Close
|
||||
|
||||
#pragma unroll 8
|
||||
for(int k=0; k<8; k++)
|
||||
message[k] = SWAB32(hash[k]);
|
||||
}
|
||||
|
||||
__global__ void __launch_bounds__(256, 4)
|
||||
myriadgroestl_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t *hashBuffer)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
|
||||
if (thread < threads)
|
||||
{
|
||||
// GROESTL
|
||||
uint32_t paddedInput[8];
|
||||
#pragma unroll 8
|
||||
for(int k=0;k<8;k++) paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
|
||||
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
|
||||
if (thread < threads)
|
||||
{
|
||||
// GROESTL
|
||||
uint32_t paddedInput[8];
|
||||
#pragma unroll 8
|
||||
for(int k=0; k<8; k++)
|
||||
paddedInput[k] = myriadgroestl_gpu_msg[4*k+threadIdx.x%4];
|
||||
|
||||
uint32_t nounce = startNounce + thread;
|
||||
if ((threadIdx.x % 4) == 3)
|
||||
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19
|
||||
uint32_t nounce = startNounce + thread;
|
||||
if ((threadIdx.x % 4) == 3)
|
||||
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19
|
||||
|
||||
uint32_t msgBitsliced[8];
|
||||
to_bitslice_quad(paddedInput, msgBitsliced);
|
||||
uint32_t msgBitsliced[8];
|
||||
to_bitslice_quad(paddedInput, msgBitsliced);
|
||||
|
||||
uint32_t state[8];
|
||||
uint32_t state[8];
|
||||
|
||||
groestl512_progressMessage_quad(state, msgBitsliced);
|
||||
groestl512_progressMessage_quad(state, msgBitsliced);
|
||||
|
||||
uint32_t out_state[16];
|
||||
from_bitslice_quad(state, out_state);
|
||||
uint32_t out_state[16];
|
||||
from_bitslice_quad(state, out_state);
|
||||
|
||||
if ((threadIdx.x & 0x03) == 0)
|
||||
{
|
||||
uint32_t *outpHash = &hashBuffer[16 * thread];
|
||||
#pragma unroll 16
|
||||
for(int k=0;k<16;k++) outpHash[k] = out_state[k];
|
||||
}
|
||||
}
|
||||
if ((threadIdx.x & 0x03) == 0)
|
||||
{
|
||||
uint32_t *outpHash = &hashBuffer[16 * thread];
|
||||
#pragma unroll 16
|
||||
for(int k=0; k<16; k++) outpHash[k] = out_state[k];
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -260,42 +267,42 @@ __global__ void
|
||||
myriadgroestl_gpu_hash_quad2(uint32_t threads, uint32_t startNounce, uint32_t *resNounce, uint32_t *hashBuffer)
|
||||
{
|
||||
#if __CUDA_ARCH__ >= 300
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (thread < threads)
|
||||
{
|
||||
uint32_t nounce = startNounce + thread;
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
if (thread < threads)
|
||||
{
|
||||
uint32_t nounce = startNounce + thread;
|
||||
|
||||
uint32_t out_state[16];
|
||||
uint32_t *inpHash = &hashBuffer[16 * thread];
|
||||
#pragma unroll 16
|
||||
for (int i=0; i < 16; i++)
|
||||
out_state[i] = inpHash[i];
|
||||
uint32_t out_state[16];
|
||||
uint32_t *inpHash = &hashBuffer[16 * thread];
|
||||
|
||||
myriadgroestl_gpu_sha256(out_state);
|
||||
#pragma unroll 16
|
||||
for (int i=0; i < 16; i++)
|
||||
out_state[i] = inpHash[i];
|
||||
|
||||
int i, position = -1;
|
||||
bool rc = true;
|
||||
myriadgroestl_gpu_sha256(out_state);
|
||||
|
||||
#pragma unroll 8
|
||||
for (i = 7; i >= 0; i--) {
|
||||
if (out_state[i] > pTarget[i]) {
|
||||
if(position < i) {
|
||||
position = i;
|
||||
rc = false;
|
||||
}
|
||||
}
|
||||
if (out_state[i] < pTarget[i]) {
|
||||
if(position < i) {
|
||||
position = i;
|
||||
rc = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
int i, position = -1;
|
||||
bool rc = true;
|
||||
|
||||
if(rc == true)
|
||||
if(resNounce[0] > nounce)
|
||||
resNounce[0] = nounce;
|
||||
}
|
||||
#pragma unroll 8
|
||||
for (i = 7; i >= 0; i--) {
|
||||
if (out_state[i] > pTarget[i]) {
|
||||
if(position < i) {
|
||||
position = i;
|
||||
rc = false;
|
||||
}
|
||||
}
|
||||
if (out_state[i] < pTarget[i]) {
|
||||
if(position < i) {
|
||||
position = i;
|
||||
rc = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(rc && resNounce[0] > nounce)
|
||||
resNounce[0] = nounce;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -303,93 +310,76 @@ __global__ void
|
||||
__host__
|
||||
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
|
||||
{
|
||||
cudaMemcpyToSymbol( myr_sha256_gpu_hashTable,
|
||||
myr_sha256_cpu_hashTable,
|
||||
sizeof(uint32_t) * 8 );
|
||||
uint32_t temp[64];
|
||||
for(int i=0; i<64; i++)
|
||||
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
|
||||
|
||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
|
||||
myr_sha256_cpu_constantTable,
|
||||
sizeof(uint32_t) * 64 );
|
||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2,
|
||||
temp,
|
||||
sizeof(uint32_t) * 64 );
|
||||
|
||||
// zweite CPU-Tabelle bauen und auf die GPU laden
|
||||
uint32_t temp[64];
|
||||
for(int i=0;i<64;i++)
|
||||
temp[i] = myr_sha256_cpu_w2Table[i] + myr_sha256_cpu_constantTable[i];
|
||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable,
|
||||
myr_sha256_cpu_constantTable,
|
||||
sizeof(uint32_t) * 64 );
|
||||
|
||||
cudaMemcpyToSymbol( myr_sha256_gpu_constantTable2,
|
||||
temp,
|
||||
sizeof(uint32_t) * 64 );
|
||||
|
||||
// Speicher für Gewinner-Nonce belegen
|
||||
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
||||
|
||||
// Speicher für temporäreHashes
|
||||
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
|
||||
cudaMalloc(&d_outputHashes[thr_id], (size_t) 64 * threads);
|
||||
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
||||
}
|
||||
|
||||
__host__
|
||||
void myriadgroestl_cpu_free(int thr_id)
|
||||
{
|
||||
cudaFree(d_resultNonce[thr_id]);
|
||||
cudaFree(d_outputHashes[thr_id]);
|
||||
cudaFree(d_outputHashes[thr_id]);
|
||||
cudaFree(d_resultNonce[thr_id]);
|
||||
}
|
||||
|
||||
__host__
|
||||
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
||||
{
|
||||
// Nachricht expandieren und setzen
|
||||
uint32_t msgBlock[32];
|
||||
// Nachricht expandieren und setzen
|
||||
uint32_t msgBlock[32] = { 0 };
|
||||
memcpy(&msgBlock[0], data, 80);
|
||||
|
||||
memset(msgBlock, 0, sizeof(uint32_t) * 32);
|
||||
memcpy(&msgBlock[0], data, 80);
|
||||
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
|
||||
// Unsere Nachricht hat 80 Byte
|
||||
msgBlock[20] = 0x80;
|
||||
msgBlock[31] = 0x01000000;
|
||||
|
||||
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
|
||||
// Unsere Nachricht hat 80 Byte
|
||||
msgBlock[20] = 0x80;
|
||||
msgBlock[31] = 0x01000000;
|
||||
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
|
||||
// auf der GPU ausgeführt)
|
||||
|
||||
// groestl512 braucht hierfür keinen CPU-Code (die einzige Runde wird
|
||||
// auf der GPU ausgeführt)
|
||||
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
|
||||
cudaMemcpyToSymbol(myriadgroestl_gpu_msg, msgBlock, 128);
|
||||
|
||||
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
|
||||
cudaMemcpyToSymbol( myriadgroestl_gpu_msg,
|
||||
msgBlock,
|
||||
128);
|
||||
|
||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
||||
cudaMemcpyToSymbol( pTarget,
|
||||
pTargetIn,
|
||||
sizeof(uint32_t) * 8 );
|
||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
||||
cudaMemcpyToSymbol(pTarget, pTargetIn, 32);
|
||||
}
|
||||
|
||||
__host__
|
||||
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
|
||||
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *resNounce)
|
||||
{
|
||||
uint32_t threadsperblock = 256;
|
||||
uint32_t threadsperblock = 256;
|
||||
|
||||
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
|
||||
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
|
||||
const int factor=4;
|
||||
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
|
||||
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
|
||||
const int factor = 4;
|
||||
|
||||
// Größe des dynamischen Shared Memory Bereichs
|
||||
size_t shared_size = 0;
|
||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
||||
// berechne wie viele Thread Blocks wir brauchen
|
||||
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
|
||||
dim3 block(threadsperblock);
|
||||
|
||||
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
||||
// berechne wie viele Thread Blocks wir brauchen
|
||||
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
|
||||
dim3 block(threadsperblock);
|
||||
if (device_sm[device_map[thr_id]] < 300) {
|
||||
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
|
||||
return;
|
||||
}
|
||||
|
||||
if (device_sm[device_map[thr_id]] < 300) {
|
||||
printf("Sorry, This algo is not supported by this GPU arch (SM 3.0 required)");
|
||||
return;
|
||||
}
|
||||
myriadgroestl_gpu_hash_quad <<< grid, block >>> (threads, startNounce, d_outputHashes[thr_id]);
|
||||
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
|
||||
myriadgroestl_gpu_hash_quad2 <<< grid2, block >>> (threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
|
||||
|
||||
myriadgroestl_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_outputHashes[thr_id]);
|
||||
dim3 grid2((threads + threadsperblock-1)/threadsperblock);
|
||||
myriadgroestl_gpu_hash_quad2<<<grid2, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id], d_outputHashes[thr_id]);
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
||||
MyStreamSynchronize(NULL, 0, thr_id);
|
||||
|
||||
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
||||
MyStreamSynchronize(NULL, 0, thr_id);
|
||||
|
||||
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||
cudaMemcpy(resNounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||
}
|
||||
|
@ -10,7 +10,7 @@
|
||||
void myriadgroestl_cpu_init(int thr_id, uint32_t threads);
|
||||
void myriadgroestl_cpu_free(int thr_id);
|
||||
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn);
|
||||
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce);
|
||||
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *nounce);
|
||||
|
||||
void myriadhash(void *state, const void *input)
|
||||
{
|
||||
@ -37,18 +37,18 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
|
||||
uint32_t *pdata = work->data;
|
||||
uint32_t *ptarget = work->target;
|
||||
uint32_t start_nonce = pdata[19];
|
||||
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 17);
|
||||
int dev_id = device_map[thr_id];
|
||||
int intensity = (device_sm[dev_id] >= 600) ? 20 : 18;
|
||||
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
|
||||
if (init[thr_id]) throughput = min(throughput, max_nonce - start_nonce);
|
||||
|
||||
uint32_t *outputHash = (uint32_t*)malloc(throughput * 64);
|
||||
|
||||
if (opt_benchmark)
|
||||
ptarget[7] = 0x0000ff;
|
||||
|
||||
// init
|
||||
if(!init[thr_id])
|
||||
{
|
||||
cudaSetDevice(device_map[thr_id]);
|
||||
cudaSetDevice(dev_id);
|
||||
if (opt_cudaschedule == -1 && gpu_threads == 1) {
|
||||
cudaDeviceReset();
|
||||
// reduce cpu usage
|
||||
@ -62,14 +62,13 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
|
||||
for (int k=0; k < 20; k++)
|
||||
be32enc(&endiandata[k], pdata[k]);
|
||||
|
||||
// Context mit dem Endian gedrehten Blockheader vorbereiten (Nonce wird später ersetzt)
|
||||
myriadgroestl_cpu_setBlock(thr_id, endiandata, (void*)ptarget);
|
||||
|
||||
do {
|
||||
// GPU
|
||||
uint32_t foundNounce = UINT32_MAX;
|
||||
|
||||
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce);
|
||||
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], &foundNounce);
|
||||
|
||||
*hashes_done = pdata[19] - start_nonce + throughput;
|
||||
|
||||
@ -81,9 +80,8 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
|
||||
if (vhash[7] <= ptarget[7] && fulltest(vhash, ptarget)) {
|
||||
work_set_target_ratio(work, vhash);
|
||||
pdata[19] = foundNounce;
|
||||
free(outputHash);
|
||||
return 1;
|
||||
} else {
|
||||
} else if (vhash[7] > ptarget[7]) {
|
||||
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNounce);
|
||||
}
|
||||
}
|
||||
@ -98,7 +96,6 @@ int scanhash_myriad(int thr_id, struct work *work, uint32_t max_nonce, unsigned
|
||||
|
||||
*hashes_done = max_nonce - start_nonce;
|
||||
|
||||
free(outputHash);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user