x15/whirlpool: improve hash rate and reduce cpu usage

also do some define's clean up
This commit is contained in:
Tanguy Pruvot 2016-01-01 08:00:23 +01:00
parent 8ceb5cfd65
commit 394d50987c
3 changed files with 45 additions and 29 deletions

View File

@ -7,27 +7,29 @@
#define threadsperblock 256
#define USE_SHARED 1
//#define __DEV_STORAGE__ __constant__
#define __DEV_STORAGE__ __device__
#include "cuda_helper.h"
extern __device__ __device_builtin__ void __threadfence_block(void);
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding)
__constant__ uint32_t pTarget[8];
__DEV_STORAGE__ static uint64_t c_PaddedMessage80[16]; // input end block after midstate
__DEV_STORAGE__ static uint32_t pTarget[8];
static uint32_t *h_wnounce[MAX_GPUS] = { 0 };
static uint32_t *d_WNonce[MAX_GPUS] = { 0 };
#define USE_ALL_TABLES 1
__constant__ static uint64_t mixTob0Tox[256];
__DEV_STORAGE__ static uint64_t mixTob0Tox[256];
#if USE_ALL_TABLES
__constant__ static uint64_t mixTob1Tox[256];
__constant__ static uint64_t mixTob2Tox[256];
__constant__ static uint64_t mixTob3Tox[256];
__constant__ static uint64_t mixTob4Tox[256];
__constant__ static uint64_t mixTob5Tox[256];
__constant__ static uint64_t mixTob6Tox[256];
__constant__ static uint64_t mixTob7Tox[256];
__DEV_STORAGE__ static uint64_t mixTob1Tox[256];
__DEV_STORAGE__ static uint64_t mixTob2Tox[256];
__DEV_STORAGE__ static uint64_t mixTob3Tox[256];
__DEV_STORAGE__ static uint64_t mixTob4Tox[256];
__DEV_STORAGE__ static uint64_t mixTob5Tox[256];
__DEV_STORAGE__ static uint64_t mixTob6Tox[256];
__DEV_STORAGE__ static uint64_t mixTob7Tox[256];
#endif
/**
@ -193,7 +195,7 @@ static const uint64_t old1_T0[256] = {
SPH_C64(0x3F6B933FF815F8F8), SPH_C64(0xA4C244A486978686)
};
#if USE_ALL_TABLES
static const uint64_t old1_T1[256] = {
SPH_C64(0xD8C0781828181878), SPH_C64(0x2605AF23652323AF),
SPH_C64(0xB87EF9C657C6C6F9), SPH_C64(0xFB136FE825E8E86F),
@ -1110,6 +1112,7 @@ static const uint64_t old1_T7[256] = {
SPH_C64(0x2888755D88287828), SPH_C64(0x5C3186DA315CE45C),
SPH_C64(0xF83F6B933FF815F8), SPH_C64(0x86A4C244A4869786)
};
#endif /* USE_ALL_TABLES */
static const uint64_t old1_RC[10] = {
SPH_C64(0x4F01B887E8C62318),
@ -1255,6 +1258,7 @@ static const uint64_t plain_T0[256] = {
SPH_C64(0x6BED3F93F8C7F8F8), SPH_C64(0xC211A44486228686)
};
#if USE_ALL_TABLES
static const uint64_t plain_T1[256] = {
SPH_C64(0x3078C018601818D8), SPH_C64(0x46AF05238C232326),
SPH_C64(0x91F97EC63FC6C6B8), SPH_C64(0xCD6F13E887E8E8FB),
@ -2171,11 +2175,13 @@ static const uint64_t plain_T7[256] = {
SPH_C64(0x287550885D28A028), SPH_C64(0x5C86B831DA5C6D5C),
SPH_C64(0xF86BED3F93F8C7F8), SPH_C64(0x86C211A444862286)
};
#endif /* USE_ALL_TABLES */
/**
* Round constants.
*/
__constant__ uint64_t InitVector_RC[10];
__DEV_STORAGE__ uint64_t InitVector_RC[10];
static const uint64_t plain_RC[10] = {
SPH_C64(0x4F01B887E8C62318),
@ -2312,7 +2318,6 @@ void oldwhirlpool_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outp
uint64_t h8[8];
} hash;
uint64_t state[8];
uint64_t n[8];
uint64_t h[8];
@ -2322,13 +2327,16 @@ void oldwhirlpool_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outp
h[i] = 0; // read state
}
#pragma unroll 10
__threadfence_block(); // ensure shared mem is ready
// #pragma unroll 10
for (unsigned r=0; r < 10; r++) {
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(sharedMemory, h, tmp, InitVector_RC[r]);
ROUND_WENC(sharedMemory, n, h, tmp);
}
uint64_t state[8];
#pragma unroll 8
for (int i=0; i < 8; i++) {
state[i] = xor1(n[i],c_PaddedMessage80[i]);
@ -2351,7 +2359,7 @@ void oldwhirlpool_gpu_hash_80(uint32_t threads, uint32_t startNounce, void *outp
n[i] = xor1(n[i],h[i]);
}
#pragma unroll 10
// #pragma unroll 10
for (unsigned r=0; r < 10; r++) {
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(sharedMemory, h, tmp, InitVector_RC[r]);
@ -2410,7 +2418,7 @@ void x15_whirlpool_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t
for (i=0; i<8; i++)
n[i] = hash[i] = g_hash[hashPosition + i];
#pragma unroll 10
// #pragma unroll 10
for (i=0; i < 10; i++) {
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(sharedMemory, h, tmp, InitVector_RC[i]);
@ -2434,7 +2442,7 @@ void x15_whirlpool_gpu_hash_64(uint32_t threads, uint32_t startNounce, uint64_t
n[i] = xor1(n[i], h[i]);
}
#pragma unroll 10
// #pragma unroll 10
for (i=0; i < 10; i++) {
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(sharedMemory, h, tmp, InitVector_RC[i]);
@ -2499,7 +2507,7 @@ void oldwhirlpool_gpu_finalhash_64(uint32_t threads, uint32_t startNounce, uint6
h[i] = 0;
}
#pragma unroll 10
// #pragma unroll 10
for (unsigned r=0; r < 10; r++) {
uint64_t tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
ROUND_KSCHED(sharedMemory, h, tmp, InitVector_RC[r]);
@ -2564,6 +2572,7 @@ extern void x15_whirlpool_cpu_init(int thr_id, uint32_t threads, int mode)
case 1: /* old whirlpool */
cudaMemcpyToSymbol(InitVector_RC, old1_RC, sizeof(plain_RC), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(mixTob0Tox, old1_T0, sizeof(plain_T0), 0, cudaMemcpyHostToDevice);
#if USE_ALL_TABLES
cudaMemcpyToSymbol(mixTob1Tox, old1_T1, (256*8), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(mixTob2Tox, old1_T2, (256*8), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(mixTob3Tox, old1_T3, (256*8), 0, cudaMemcpyHostToDevice);
@ -2571,6 +2580,7 @@ extern void x15_whirlpool_cpu_init(int thr_id, uint32_t threads, int mode)
cudaMemcpyToSymbol(mixTob5Tox, old1_T5, (256*8), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(mixTob6Tox, old1_T6, (256*8), 0, cudaMemcpyHostToDevice);
cudaMemcpyToSymbol(mixTob7Tox, old1_T7, (256*8), 0, cudaMemcpyHostToDevice);
#endif
break;
}
@ -2591,11 +2601,9 @@ extern void x15_whirlpool_cpu_hash_64(int thr_id, uint32_t threads, uint32_t sta
dim3 grid((threads + threadsperblock-1) / threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
x15_whirlpool_gpu_hash_64 <<<grid, block>>> (threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
x15_whirlpool_gpu_hash_64<<<grid, block, shared_size>>>(threads, startNounce, (uint64_t*)d_hash, d_nonceVector);
MyStreamSynchronize(NULL, order, thr_id);
//MyStreamSynchronize(NULL, order, thr_id);
}
__host__
@ -2623,13 +2631,10 @@ extern uint32_t whirlpool512_cpu_finalhash_64(int thr_id, uint32_t threads, uint
__host__
void whirlpool512_cpu_hash_80(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_outputHash, int order)
{
// berechne wie viele Thread Blocks wir brauchen
dim3 grid((threads + threadsperblock-1) / threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
oldwhirlpool_gpu_hash_80<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash);
oldwhirlpool_gpu_hash_80 <<<grid, block>>> (threads, startNounce, d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
}

View File

@ -66,8 +66,13 @@ extern "C" int scanhash_whirl(int thr_id, struct work* work, uint32_t max_nonce,
if (!init[thr_id]) {
cudaSetDevice(device_map[thr_id]);
cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], (size_t) 64 * throughput));
x15_whirlpool_cpu_init(thr_id, throughput, 1 /* old whirlpool */);
init[thr_id] = true;

View File

@ -151,6 +151,12 @@ extern "C" int scanhash_x15(int thr_id, struct work* work, uint32_t max_nonce,
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
CUDA_LOG_ERROR();
}
quark_blake512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);