neoscrypt: cleanup...
My SM 3.0 functions are ok but djm34 implementation uses too much registers for this arch...
This commit is contained in:
parent
7c7f40a634
commit
1b31f11252
@ -4,9 +4,9 @@
|
||||
#include "cuda_helper.h"
|
||||
#include "cuda_vectors.h" /* NOT COMPATIBLE WITH SM 3.0 !!! */
|
||||
|
||||
__device__ uint4* W;
|
||||
uint32_t *d_NNonce[MAX_GPUS];
|
||||
uint32_t *d_nnounce[MAX_GPUS];
|
||||
static uint32_t *d_buffer[MAX_GPUS];
|
||||
static uint32_t *d_NNonce[MAX_GPUS];
|
||||
__constant__ uint4* W;
|
||||
__constant__ uint32_t pTarget[8];
|
||||
__constant__ uint32_t key_init[16];
|
||||
__constant__ uint32_t input_init[16];
|
||||
@ -423,14 +423,14 @@ static __device__ __forceinline__ void neoscrypt_salsa(uint16 *XV)
|
||||
#define SHIFT 130
|
||||
|
||||
__global__ __launch_bounds__(128, 1)
|
||||
void neoscrypt_gpu_hash_k0(int stratum, uint32_t threads, uint32_t startNonce)
|
||||
void neoscrypt_gpu_hash_k0(uint32_t threads, uint32_t startNonce, bool stratum)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
uint32_t shift = SHIFT * 16 * thread;
|
||||
// if (thread < threads)
|
||||
{
|
||||
uint32_t data[80];
|
||||
uint16 X[4];
|
||||
uint32_t shift = thread * SHIFT * 16;
|
||||
const uint32_t nonce = startNonce + thread;
|
||||
|
||||
for (int i = 0; i<20; i++) {
|
||||
@ -451,10 +451,10 @@ __global__ __launch_bounds__(128, 1)
|
||||
void neoscrypt_gpu_hash_k01(uint32_t threads, uint32_t startNonce)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
uint32_t shift = SHIFT * 16 * thread;
|
||||
// if (thread < threads)
|
||||
{
|
||||
uint16 X[4];
|
||||
uint32_t shift = thread * SHIFT * 16;
|
||||
((uintx64 *)X)[0]= ldg256(&(W + shift)[0]);
|
||||
|
||||
//#pragma unroll
|
||||
@ -471,10 +471,10 @@ __global__ __launch_bounds__(128, 1)
|
||||
void neoscrypt_gpu_hash_k2(uint32_t threads, uint32_t startNonce)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
uint32_t shift = SHIFT * 16 * thread;
|
||||
// if (thread < threads)
|
||||
{
|
||||
uint16 X[4];
|
||||
uint32_t shift = thread * SHIFT * 16;
|
||||
((uintx64 *)X)[0] = ldg256(&(W + shift)[2048]);
|
||||
|
||||
for (int t = 0; t < 128; t++)
|
||||
@ -495,7 +495,7 @@ void neoscrypt_gpu_hash_k3(uint32_t threads, uint32_t startNonce)
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
// if (thread < threads)
|
||||
{
|
||||
uint32_t shift = SHIFT * 16 * thread;
|
||||
uint32_t shift = thread * SHIFT * 16;
|
||||
uint16 Z[4];
|
||||
|
||||
((uintx64*)Z)[0] = ldg256(&(W + shift)[0]);
|
||||
@ -510,14 +510,14 @@ void neoscrypt_gpu_hash_k3(uint32_t threads, uint32_t startNonce)
|
||||
}
|
||||
|
||||
__global__ __launch_bounds__(128, 1)
|
||||
void neoscrypt_gpu_hash_k4(int stratum, uint32_t threads, uint32_t startNonce, uint32_t *nonceVector)
|
||||
void neoscrypt_gpu_hash_k4(uint32_t threads, uint32_t startNonce, uint32_t *nonceRes, bool stratum)
|
||||
{
|
||||
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
||||
// if (thread < threads)
|
||||
if (thread < threads)
|
||||
{
|
||||
const uint32_t nonce = startNonce + thread;
|
||||
|
||||
uint32_t shift = SHIFT * 16 * thread;
|
||||
uint32_t shift = thread * SHIFT * 16;
|
||||
uint16 Z[4];
|
||||
uint32_t outbuf[8];
|
||||
uint32_t data[80];
|
||||
@ -539,33 +539,37 @@ void neoscrypt_gpu_hash_k4(int stratum, uint32_t threads, uint32_t startNonce, u
|
||||
((uintx64 *)Z)[0] ^= ldg256(&(W + shift)[2064]);
|
||||
fastkdf32(data, (uint32_t*)Z, outbuf);
|
||||
if (outbuf[7] <= pTarget[7]) {
|
||||
uint32_t tmp = atomicExch(&nonceVector[0], nonce);
|
||||
atomicMin(nonceRes, nonce); // init val is UINT32_MAX
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void neoscrypt_cpu_init(int thr_id, uint32_t threads, uint32_t *hash)
|
||||
__host__
|
||||
void neoscrypt_cpu_init(int thr_id, uint32_t threads)
|
||||
{
|
||||
cudaMemcpyToSymbol(BLAKE2S_SIGMA, BLAKE2S_SIGMA_host, sizeof(BLAKE2S_SIGMA_host), 0, cudaMemcpyHostToDevice);
|
||||
cudaMemcpyToSymbol(W, &hash, sizeof(hash), 0, cudaMemcpyHostToDevice);
|
||||
cuda_get_arch(thr_id);
|
||||
cudaMalloc(&d_NNonce[thr_id], sizeof(uint32_t));
|
||||
CUDA_SAFE_CALL(cudaMalloc(&d_buffer[thr_id], threads * 256 * SHIFT));
|
||||
cudaMemcpyToSymbol(W, &d_buffer[thr_id], sizeof(uint4*), 0, cudaMemcpyHostToDevice);
|
||||
cudaMemcpyToSymbol(BLAKE2S_SIGMA, BLAKE2S_SIGMA_host, sizeof(BLAKE2S_SIGMA_host), 0, cudaMemcpyHostToDevice);
|
||||
}
|
||||
|
||||
__host__
|
||||
uint32_t neoscrypt_cpu_hash_k4(int stratum, int thr_id, uint32_t threads, uint32_t startNounce, int order)
|
||||
uint32_t neoscrypt_cpu_hash_k4(int thr_id, uint32_t threads, uint32_t startNounce, bool have_stratum, int order)
|
||||
{
|
||||
uint32_t result[MAX_GPUS] = { 0xffffffff };
|
||||
uint32_t result[MAX_GPUS];
|
||||
memset(result, 0xff, sizeof(result));
|
||||
cudaMemset(d_NNonce[thr_id], 0xff, sizeof(uint32_t));
|
||||
|
||||
const uint32_t threadsperblock = 128;
|
||||
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
|
||||
dim3 block(threadsperblock);
|
||||
|
||||
neoscrypt_gpu_hash_k0 <<< grid, block >>>(stratum, threads, startNounce);
|
||||
neoscrypt_gpu_hash_k0 <<< grid, block >>>(threads, startNounce, have_stratum);
|
||||
neoscrypt_gpu_hash_k01 <<< grid, block >>>(threads, startNounce);
|
||||
neoscrypt_gpu_hash_k2 <<< grid, block >>>(threads, startNounce);
|
||||
neoscrypt_gpu_hash_k3 <<< grid, block >>>(threads, startNounce);
|
||||
neoscrypt_gpu_hash_k4 <<< grid, block >>>(stratum, threads, startNounce, d_NNonce[thr_id]);
|
||||
neoscrypt_gpu_hash_k4 <<< grid, block >>>(threads, startNounce, d_NNonce[thr_id], have_stratum);
|
||||
|
||||
MyStreamSynchronize(NULL, order, thr_id);
|
||||
cudaMemcpy(&result[thr_id], d_NNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
||||
@ -578,6 +582,7 @@ void neoscrypt_setBlockTarget(uint32_t* pdata, const void *target)
|
||||
{
|
||||
unsigned char PaddedMessage[80*4]; //bring balance to the force
|
||||
uint32_t input[16], key[16] = { 0 };
|
||||
|
||||
memcpy(PaddedMessage, pdata, 80);
|
||||
memcpy(PaddedMessage + 80, pdata, 80);
|
||||
memcpy(PaddedMessage + 160, pdata, 80);
|
||||
|
@ -478,23 +478,25 @@ static __forceinline__ __device__ uint32_t rotateR(uint32_t vec4, uint32_t shift
|
||||
|
||||
#if __CUDA_ARCH__ < 320
|
||||
|
||||
// right shift a 64 bytes input (256-bits integer) by 0 8 16 24 bits
|
||||
static __forceinline__ __device__ void shift256R(uint32_t* ret, const uint8 &vec4, uint32_t shift)
|
||||
// right shift a 64-bytes integer (256-bits) by 0 8 16 24 bits
|
||||
// require a uint32_t[9] ret array
|
||||
// note: djm neoscrypt implementation is near the limits of gpu capabilities
|
||||
// and weird behaviors can happen when tuning device functions code...
|
||||
__device__ void shift256R(uint32_t* ret, const uint8 &vec4, uint32_t shift)
|
||||
{
|
||||
uint8_t *v = (uint8_t*) &vec4.s0;
|
||||
uint8_t *r = (uint8_t*) ret;
|
||||
uint8_t bytes = (uint8_t) (shift >> 3);
|
||||
for (uint8_t i=0; i<bytes; i++)
|
||||
r[i] = 0;
|
||||
ret[0] = 0;
|
||||
for (uint8_t i=bytes; i<32; i++)
|
||||
r[i] = v[i-bytes];
|
||||
ret[8] = vec4.s7 >> (32 - shift); // shuffled part required ?
|
||||
//printf("A %02u %08x %08x > %08x %08x\n", shift, vec4.s6, vec4.s7, ret[7], ret[8]);
|
||||
ret[8] = vec4.s7 >> (32 - shift); // shuffled part required
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
// right shift a 32 bytes input (256-bits integer) by 0 8 16 24 bits
|
||||
static __forceinline__ __device__ void shift256R(uint32_t* ret, const uint8 &vec4, uint32_t shift)
|
||||
// same for SM 3.5+, really faster ?
|
||||
__device__ void shift256R(uint32_t* ret, const uint8 &vec4, uint32_t shift)
|
||||
{
|
||||
uint32_t truc = 0, truc2 = cuda_swab32(vec4.s7), truc3 = 0;
|
||||
asm("shf.r.clamp.b32 %0, %1, %2, %3;" : "=r"(truc) : "r"(truc3), "r"(truc2), "r"(shift));
|
||||
@ -522,7 +524,6 @@ static __forceinline__ __device__ void shift256R(uint32_t* ret, const uint8 &vec
|
||||
ret[1] = cuda_swab32(truc);
|
||||
asm("shr.b32 %0, %1, %2;" : "=r"(truc) : "r"(truc3), "r"(shift));
|
||||
ret[0] = cuda_swab32(truc);
|
||||
//printf("B %02u %08x %08x > %08x %08x\n", shift, vec4.s6, vec4.s7, ret[7], ret[8]);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -2,13 +2,9 @@
|
||||
#include "miner.h"
|
||||
#include "neoscrypt/neoscrypt.h"
|
||||
|
||||
static uint32_t *d_hash[MAX_GPUS] ;
|
||||
extern void neoscrypt_setBlockTarget(uint32_t * data, const void *ptarget);
|
||||
extern void neoscrypt_cpu_init(int thr_id, uint32_t threads, uint32_t* hash);
|
||||
extern uint32_t neoscrypt_cpu_hash_k4(int stratum, int thr_id, uint32_t threads, uint32_t startNounce, int order);
|
||||
extern int cuda_get_arch(int thr_id);
|
||||
|
||||
#define SHIFT 130
|
||||
extern void neoscrypt_cpu_init(int thr_id, uint32_t threads);
|
||||
extern uint32_t neoscrypt_cpu_hash_k4(int thr_id, uint32_t threads, uint32_t startNounce, bool have_stratum, int order);
|
||||
|
||||
static bool init[MAX_GPUS] = { 0 };
|
||||
|
||||
@ -16,43 +12,35 @@ int scanhash_neoscrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uin
|
||||
{
|
||||
const uint32_t first_nonce = pdata[19];
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
||||
int intensity = is_windows() ? 18 : 19;
|
||||
uint32_t throughput = device_intensity(thr_id, __func__, 1U << intensity);
|
||||
throughput = throughput / 32; /* set for max intensity ~= 20 */
|
||||
throughput = min(throughput, max_nonce - first_nonce + 1);
|
||||
|
||||
if (opt_benchmark)
|
||||
((uint32_t*)ptarget)[7] = 0x0000ff;
|
||||
|
||||
if (!init[thr_id])
|
||||
{
|
||||
int dev_id = device_map[thr_id];
|
||||
cudaSetDevice(dev_id);
|
||||
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
|
||||
|
||||
cuda_get_arch(thr_id);
|
||||
if (device_sm[dev_id] <= 300) {
|
||||
applog(LOG_ERR, "Sorry neoscrypt is not supported on SM 3.0 devices");
|
||||
proper_exit(EXIT_CODE_CUDA_ERROR);
|
||||
}
|
||||
|
||||
cudaMalloc(&d_hash[thr_id], 32 * SHIFT * sizeof(uint64_t) * throughput);
|
||||
neoscrypt_cpu_init(thr_id, throughput, d_hash[thr_id]);
|
||||
|
||||
applog(LOG_INFO, "Using %d cuda threads", throughput);
|
||||
if (cudaGetLastError() != cudaSuccess) {
|
||||
cudaError_t err = cudaGetLastError();
|
||||
fprintf(stderr, "Cuda error in func '%s' at line %i : %s.\n",
|
||||
__FUNCTION__, __LINE__, cudaGetErrorString(err) );
|
||||
proper_exit(EXIT_FAILURE);
|
||||
}
|
||||
neoscrypt_cpu_init(thr_id, throughput);
|
||||
|
||||
init[thr_id] = true;
|
||||
}
|
||||
|
||||
uint32_t endiandata[20];
|
||||
if (have_stratum) {
|
||||
for (int k = 0; k < 20; k++)
|
||||
be32enc(&endiandata[k], ((uint32_t*)pdata)[k]);
|
||||
be32enc(&endiandata[k], pdata[k]);
|
||||
} else {
|
||||
for (int k = 0; k < 20; k++)
|
||||
endiandata[k] = pdata[k];
|
||||
@ -61,7 +49,7 @@ int scanhash_neoscrypt(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uin
|
||||
neoscrypt_setBlockTarget(endiandata,ptarget);
|
||||
|
||||
do {
|
||||
uint32_t foundNonce = neoscrypt_cpu_hash_k4((int)have_stratum, thr_id, throughput, pdata[19], 0);
|
||||
uint32_t foundNonce = neoscrypt_cpu_hash_k4(thr_id, throughput, pdata[19], have_stratum, 0);
|
||||
if (foundNonce != UINT32_MAX)
|
||||
{
|
||||
uint32_t _ALIGN(64) vhash64[8];
|
||||
|
Loading…
x
Reference in New Issue
Block a user