Browse Source

Various algos cleanup + lyra2 sec nonce fix

master
Tanguy Pruvot 10 years ago
parent
commit
03c3b7d341
  1. 19
      Algo256/cuda_fugue256.cu
  2. 7
      Algo256/cuda_groestl256.cu
  3. 18
      Algo256/keccak256.cu
  4. 22
      cuda_groestlcoin.cu
  5. 15
      cuda_myriadgroestl.cu
  6. 9
      fuguecoin.cpp
  7. 21
      groestlcoin.cpp
  8. 10
      lyra2/lyra2RE.cu
  9. 26
      myriadgroestl.cpp

19
Algo256/cuda_fugue256.cu

@ -9,7 +9,7 @@
#define USE_SHARED 1 #define USE_SHARED 1
uint32_t *d_fugue256_hashoutput[MAX_GPUS]; uint32_t *d_fugue256_hashoutput[MAX_GPUS];
uint32_t *d_resultNonce[MAX_GPUS]; static uint32_t *d_resultNonce[MAX_GPUS];
__constant__ uint32_t GPUstate[30]; // Single GPU __constant__ uint32_t GPUstate[30]; // Single GPU
__constant__ uint32_t pTarget[8]; // Single GPU __constant__ uint32_t pTarget[8]; // Single GPU
@ -718,10 +718,9 @@ fugue256_gpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outp
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); }
__host__
void fugue256_cpu_init(int thr_id, uint32_t threads) void fugue256_cpu_init(int thr_id, uint32_t threads)
{ {
cudaSetDevice(device_map[thr_id]);
// Kopiere die Hash-Tabellen in den GPU-Speicher // Kopiere die Hash-Tabellen in den GPU-Speicher
texDef(mixTab0Tex, mixTab0m, mixtab0_cpu, sizeof(uint32_t)*256); texDef(mixTab0Tex, mixTab0m, mixtab0_cpu, sizeof(uint32_t)*256);
texDef(mixTab1Tex, mixTab1m, mixtab1_cpu, sizeof(uint32_t)*256); texDef(mixTab1Tex, mixTab1m, mixtab1_cpu, sizeof(uint32_t)*256);
@ -733,25 +732,23 @@ void fugue256_cpu_init(int thr_id, uint32_t threads)
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
} }
__host__ void fugue256_cpu_setBlock(int thr_id, void *data, void *pTargetIn) __host__
void fugue256_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{ {
// CPU-Vorbereitungen treffen // CPU-Vorbereitungen treffen
sph_fugue256_context ctx_fugue_const; sph_fugue256_context ctx_fugue_const;
sph_fugue256_init(&ctx_fugue_const); sph_fugue256_init(&ctx_fugue_const);
sph_fugue256 (&ctx_fugue_const, data, 80); // State speichern sph_fugue256 (&ctx_fugue_const, data, 80); // State speichern
cudaMemcpyToSymbol( GPUstate, cudaMemcpyToSymbol(GPUstate, ctx_fugue_const.S, sizeof(uint32_t) * 30);
ctx_fugue_const.S,
sizeof(uint32_t) * 30 );
cudaMemcpyToSymbol( pTarget, cudaMemcpyToSymbol(pTarget, pTargetIn, sizeof(uint32_t) * 8);
pTargetIn,
sizeof(uint32_t) * 8 );
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t)); cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
} }
__host__ void fugue256_cpu_hash(int thr_id, uint32_t threads, int startNounce, void *outputHashes, uint32_t *nounce) __host__
void fugue256_cpu_hash(int thr_id, uint32_t threads, int startNounce, void *outputHashes, uint32_t *nounce)
{ {
#if USE_SHARED #if USE_SHARED
const uint32_t threadsperblock = 256; // Alignment mit mixtab Grösse. NICHT ÄNDERN const uint32_t threadsperblock = 256; // Alignment mit mixtab Grösse. NICHT ÄNDERN

7
Algo256/cuda_groestl256.cu

@ -280,8 +280,8 @@ void groestl256_cpu_init(int thr_id, uint32_t threads)
__host__ __host__
uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order) uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
{ {
uint32_t result = 0xffffffff; uint32_t result = UINT32_MAX;
cudaMemset(d_GNonces[thr_id], 0xff, sizeof(uint32_t)); cudaMemset(d_GNonces[thr_id], 0xff, 2*sizeof(uint32_t));
const uint32_t threadsperblock = 256; const uint32_t threadsperblock = 256;
// berechne wie viele Thread Blocks wir brauchen // berechne wie viele Thread Blocks wir brauchen
@ -308,7 +308,10 @@ __host__
uint32_t groestl256_getSecNonce(int thr_id, int num) uint32_t groestl256_getSecNonce(int thr_id, int num)
{ {
uint32_t results[2]; uint32_t results[2];
memset(results, 0xFF, sizeof(results));
cudaMemcpy(results, d_GNonces[thr_id], sizeof(results), cudaMemcpyDeviceToHost); cudaMemcpy(results, d_GNonces[thr_id], sizeof(results), cudaMemcpyDeviceToHost);
if (results[1] == results[0])
return UINT32_MAX;
return results[num]; return results[num];
} }

18
Algo256/keccak256.cu

@ -23,10 +23,9 @@ extern uint32_t keccak256_cpu_hash_80(int thr_id, uint32_t threads, uint32_t sta
// CPU Hash // CPU Hash
extern "C" void keccak256_hash(void *state, const void *input) extern "C" void keccak256_hash(void *state, const void *input)
{ {
uint32_t _ALIGN(64) hash[16];
sph_keccak_context ctx_keccak; sph_keccak_context ctx_keccak;
uint32_t hash[16];
sph_keccak256_init(&ctx_keccak); sph_keccak256_init(&ctx_keccak);
sph_keccak256 (&ctx_keccak, input, 80); sph_keccak256 (&ctx_keccak, input, 80);
sph_keccak256_close(&ctx_keccak, (void*) hash); sph_keccak256_close(&ctx_keccak, (void*) hash);
@ -50,8 +49,8 @@ extern "C" int scanhash_keccak256(int thr_id, uint32_t *pdata,
if (!init[thr_id]) { if (!init[thr_id]) {
cudaSetDevice(device_map[thr_id]); cudaSetDevice(device_map[thr_id]);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput)); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], throughput * 64));
keccak256_cpu_init(thr_id, (int) throughput); keccak256_cpu_init(thr_id, throughput);
init[thr_id] = true; init[thr_id] = true;
} }
@ -65,16 +64,16 @@ extern "C" int scanhash_keccak256(int thr_id, uint32_t *pdata,
do { do {
int order = 0; int order = 0;
uint32_t foundNonce = keccak256_cpu_hash_80(thr_id, (int) throughput, pdata[19], d_hash[thr_id], order++); *hashes_done = pdata[19] - first_nonce + throughput;
uint32_t foundNonce = keccak256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
if (foundNonce != UINT32_MAX) if (foundNonce != UINT32_MAX)
{ {
uint32_t Htarg = ptarget[7]; uint32_t _ALIGN(64) vhash64[8];
uint32_t vhash64[8];
be32enc(&endiandata[19], foundNonce); be32enc(&endiandata[19], foundNonce);
keccak256_hash(vhash64, endiandata); keccak256_hash(vhash64, endiandata);
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
*hashes_done = foundNonce - first_nonce + 1;
pdata[19] = foundNonce; pdata[19] = foundNonce;
return 1; return 1;
} }
@ -91,6 +90,5 @@ extern "C" int scanhash_keccak256(int thr_id, uint32_t *pdata,
} while (!work_restart[thr_id].restart); } while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
return 0; return 0;
} }

22
cuda_groestlcoin.cu

@ -8,10 +8,10 @@
// globaler Speicher für alle HeftyHashes aller Threads // globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU __constant__ uint32_t pTarget[8]; // Single GPU
extern uint32_t *d_resultNonce[MAX_GPUS];
__constant__ uint32_t groestlcoin_gpu_msg[32]; __constant__ uint32_t groestlcoin_gpu_msg[32];
static uint32_t *d_resultNonce[MAX_GPUS];
#if __CUDA_ARCH__ >= 300 #if __CUDA_ARCH__ >= 300
// 64 Registers Variant for Compute 3.0+ // 64 Registers Variant for Compute 3.0+
#include "quark/groestl_functions_quad.h" #include "quark/groestl_functions_quad.h"
@ -30,7 +30,8 @@ void groestlcoin_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t
{ {
// GROESTL // GROESTL
uint32_t paddedInput[8]; uint32_t paddedInput[8];
#pragma unroll 8
#pragma unroll 8
for(int k=0;k<8;k++) paddedInput[k] = groestlcoin_gpu_msg[4*k+threadIdx.x%4]; for(int k=0;k<8;k++) paddedInput[k] = groestlcoin_gpu_msg[4*k+threadIdx.x%4];
uint32_t nounce = startNounce + thread; uint32_t nounce = startNounce + thread;
@ -68,7 +69,7 @@ void groestlcoin_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t
int i, position = -1; int i, position = -1;
bool rc = true; bool rc = true;
#pragma unroll 8 #pragma unroll 8
for (i = 7; i >= 0; i--) { for (i = 7; i >= 0; i--) {
if (out_state[i] > pTarget[i]) { if (out_state[i] > pTarget[i]) {
if(position < i) { if(position < i) {
@ -92,16 +93,14 @@ void groestlcoin_gpu_hash_quad(uint32_t threads, uint32_t startNounce, uint32_t
#endif #endif
} }
// Setup-Funktionen __host__
__host__ void groestlcoin_cpu_init(int thr_id, uint32_t threads) void groestlcoin_cpu_init(int thr_id, uint32_t threads)
{ {
cudaSetDevice(device_map[thr_id]);
// Speicher für Gewinner-Nonce belegen
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t)); cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
} }
__host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn) __host__
void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{ {
// Nachricht expandieren und setzen // Nachricht expandieren und setzen
uint32_t msgBlock[32]; uint32_t msgBlock[32];
@ -128,7 +127,8 @@ __host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
sizeof(uint32_t) * 8 ); sizeof(uint32_t) * 8 );
} }
__host__ void groestlcoin_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) __host__
void groestlcoin_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
{ {
uint32_t threadsperblock = 256; uint32_t threadsperblock = 256;

15
cuda_myriadgroestl.cu

@ -14,7 +14,7 @@
// globaler Speicher für alle HeftyHashes aller Threads // globaler Speicher für alle HeftyHashes aller Threads
__constant__ uint32_t pTarget[8]; // Single GPU __constant__ uint32_t pTarget[8]; // Single GPU
uint32_t *d_outputHashes[MAX_GPUS]; uint32_t *d_outputHashes[MAX_GPUS];
extern uint32_t *d_resultNonce[MAX_GPUS]; static uint32_t *d_resultNonce[MAX_GPUS];
__constant__ uint32_t myriadgroestl_gpu_msg[32]; __constant__ uint32_t myriadgroestl_gpu_msg[32];
@ -299,11 +299,10 @@ __global__ void
#endif #endif
} }
// Setup-Funktionen // Setup Function
__host__ void myriadgroestl_cpu_init(int thr_id, uint32_t threads) __host__
void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
{ {
cudaSetDevice(device_map[thr_id]);
cudaMemcpyToSymbol( myr_sha256_gpu_hashTable, cudaMemcpyToSymbol( myr_sha256_gpu_hashTable,
myr_sha256_cpu_hashTable, myr_sha256_cpu_hashTable,
sizeof(uint32_t) * 8 ); sizeof(uint32_t) * 8 );
@ -328,7 +327,8 @@ __host__ void myriadgroestl_cpu_init(int thr_id, uint32_t threads)
cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads); cudaMalloc(&d_outputHashes[thr_id], 16*sizeof(uint32_t)*threads);
} }
__host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn) __host__
void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
{ {
// Nachricht expandieren und setzen // Nachricht expandieren und setzen
uint32_t msgBlock[32]; uint32_t msgBlock[32];
@ -355,7 +355,8 @@ __host__ void myriadgroestl_cpu_setBlock(int thr_id, void *data, void *pTargetIn
sizeof(uint32_t) * 8 ); sizeof(uint32_t) * 8 );
} }
__host__ void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce) __host__
void myriadgroestl_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
{ {
uint32_t threadsperblock = 256; uint32_t threadsperblock = 256;

9
fuguecoin.cpp

@ -1,5 +1,6 @@
#include <string.h> #include <string.h>
#include <stdint.h> #include <stdint.h>
#include <cuda_runtime.h>
#include "uint256.h" #include "uint256.h"
#include "sph/sph_fugue.h" #include "sph/sph_fugue.h"
@ -22,7 +23,7 @@ extern "C" void my_fugue256_addbits_and_close(void *cc, unsigned ub, unsigned n,
static bool init[MAX_GPUS] = { 0 }; static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_fugue256(int thr_id, uint32_t *pdata, const uint32_t *ptarget, int scanhash_fugue256(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done) uint32_t max_nonce, unsigned long *hashes_done)
{ {
uint32_t start_nonce = pdata[19]++; uint32_t start_nonce = pdata[19]++;
@ -36,6 +37,8 @@ extern "C" int scanhash_fugue256(int thr_id, uint32_t *pdata, const uint32_t *pt
// init // init
if(!init[thr_id]) if(!init[thr_id])
{ {
cudaSetDevice(device_map[thr_id]);
fugue256_cpu_init(thr_id, throughput); fugue256_cpu_init(thr_id, throughput);
init[thr_id] = true; init[thr_id] = true;
} }
@ -50,10 +53,10 @@ extern "C" int scanhash_fugue256(int thr_id, uint32_t *pdata, const uint32_t *pt
do { do {
// GPU // GPU
uint32_t foundNounce = 0xFFFFFFFF; uint32_t foundNounce = UINT32_MAX;
fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce); fugue256_cpu_hash(thr_id, throughput, pdata[19], NULL, &foundNounce);
if(foundNounce < 0xffffffff) if (foundNounce < UINT32_MAX)
{ {
uint32_t hash[8]; uint32_t hash[8];
const uint32_t Htarg = ptarget[7]; const uint32_t Htarg = ptarget[7];

21
groestlcoin.cpp

@ -1,5 +1,6 @@
#include <string.h> #include <string.h>
#include <stdint.h> #include <stdint.h>
#include <cuda_runtime.h>
#include <openssl/sha.h> #include <openssl/sha.h>
#include "uint256.h" #include "uint256.h"
@ -36,11 +37,11 @@ static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_groestlcoin(int thr_id, uint32_t *pdata, const uint32_t *ptarget, extern "C" int scanhash_groestlcoin(int thr_id, uint32_t *pdata, const uint32_t *ptarget,
uint32_t max_nonce, unsigned long *hashes_done) uint32_t max_nonce, unsigned long *hashes_done)
{ {
uint32_t start_nonce = pdata[19]++; uint32_t start_nonce = pdata[19];
uint32_t throughput = device_intensity(thr_id, __func__, 1 << 19); // 256*256*8 uint32_t throughput = device_intensity(thr_id, __func__, 1 << 19); // 256*256*8
throughput = min(throughput, max_nonce - start_nonce); throughput = min(throughput, max_nonce - start_nonce);
uint32_t *outputHash = (uint32_t*)malloc(throughput * 16 * sizeof(uint32_t)); uint32_t *outputHash = (uint32_t*)malloc(throughput * 64);
if (opt_benchmark) if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x000000ff; ((uint32_t*)ptarget)[7] = 0x000000ff;
@ -48,6 +49,7 @@ extern "C" int scanhash_groestlcoin(int thr_id, uint32_t *pdata, const uint32_t
// init // init
if(!init[thr_id]) if(!init[thr_id])
{ {
cudaSetDevice(device_map[thr_id]);
groestlcoin_cpu_init(thr_id, throughput); groestlcoin_cpu_init(thr_id, throughput);
init[thr_id] = true; init[thr_id] = true;
} }
@ -62,27 +64,25 @@ extern "C" int scanhash_groestlcoin(int thr_id, uint32_t *pdata, const uint32_t
do { do {
// GPU // GPU
uint32_t foundNounce = 0xFFFFFFFF; uint32_t foundNounce = UINT32_MAX;
const uint32_t Htarg = ptarget[7];
*hashes_done = pdata[19] - start_nonce + throughput;
groestlcoin_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce); groestlcoin_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce);
if(foundNounce < 0xffffffff) if(foundNounce < UINT32_MAX)
{ {
uint32_t tmpHash[8]; uint32_t _ALIGN(64) tmpHash[8];
endiandata[19] = SWAP32(foundNounce); endiandata[19] = SWAP32(foundNounce);
groestlhash(tmpHash, endiandata); groestlhash(tmpHash, endiandata);
if (tmpHash[7] <= Htarg && fulltest(tmpHash, ptarget)) { if (tmpHash[7] <= ptarget[7] && fulltest(tmpHash, ptarget)) {
pdata[19] = foundNounce; pdata[19] = foundNounce;
*hashes_done = foundNounce - start_nonce + 1;
free(outputHash); free(outputHash);
return true; return true;
} else { } else {
applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNounce); applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNounce);
} }
foundNounce = 0xffffffff;
} }
if (pdata[19] + throughput < pdata[19]) if (pdata[19] + throughput < pdata[19])
@ -91,7 +91,6 @@ extern "C" int scanhash_groestlcoin(int thr_id, uint32_t *pdata, const uint32_t
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); } while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - start_nonce + 1;
free(outputHash); free(outputHash);
return 0; return 0;
} }

10
lyra2/lyra2RE.cu

@ -79,7 +79,7 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
skein256_cpu_init(thr_id, throughput); skein256_cpu_init(thr_id, throughput);
groestl256_cpu_init(thr_id, throughput); groestl256_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], 16 * sizeof(uint32_t) * throughput)); CUDA_SAFE_CALL(cudaMalloc(&d_hash[thr_id], throughput * 64));
init[thr_id] = true; init[thr_id] = true;
} }
@ -95,23 +95,22 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
int order = 0; int order = 0;
uint32_t foundNonce; uint32_t foundNonce;
*hashes_done = pdata[19] - first_nonce + throughput;
blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++); blake256_cpu_hash_80(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); keccak256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); lyra2_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); skein256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
*hashes_done = pdata[19] - first_nonce + throughput;
foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++); foundNonce = groestl256_cpu_hash_32(thr_id, throughput, pdata[19], d_hash[thr_id], order++);
if (foundNonce != UINT32_MAX) if (foundNonce != UINT32_MAX)
{ {
uint32_t _ALIGN(64) vhash64[8]; uint32_t _ALIGN(64) vhash64[8];
const uint32_t Htarg = ptarget[7];
be32enc(&endiandata[19], foundNonce); be32enc(&endiandata[19], foundNonce);
lyra2_hash(vhash64, endiandata); lyra2_hash(vhash64, endiandata);
if (vhash64[7] <= Htarg && fulltest(vhash64, ptarget)) { if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
int res = 1; int res = 1;
uint32_t secNonce = groestl256_getSecNonce(thr_id, 1); uint32_t secNonce = groestl256_getSecNonce(thr_id, 1);
if (secNonce != UINT32_MAX) if (secNonce != UINT32_MAX)
@ -136,6 +135,5 @@ extern "C" int scanhash_lyra2(int thr_id, uint32_t *pdata,
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart); } while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce + 1;
return 0; return 0;
} }

26
myriadgroestl.cpp

@ -1,5 +1,6 @@
#include <string.h> #include <string.h>
#include <stdint.h> #include <stdint.h>
#include <cuda_runtime.h>
#include <openssl/sha.h> #include <openssl/sha.h>
#include "uint256.h" #include "uint256.h"
@ -41,7 +42,7 @@ extern "C" int scanhash_myriad(int thr_id, uint32_t *pdata, const uint32_t *ptar
uint32_t throughput = device_intensity(thr_id, __func__, 1 << 17); uint32_t throughput = device_intensity(thr_id, __func__, 1 << 17);
throughput = min(throughput, max_nonce - start_nonce); throughput = min(throughput, max_nonce - start_nonce);
uint32_t *outputHash = (uint32_t*)malloc(throughput * 16 * sizeof(uint32_t)); uint32_t *outputHash = (uint32_t*)malloc(throughput * 64);
if (opt_benchmark) if (opt_benchmark)
((uint32_t*)ptarget)[7] = 0x0000ff; ((uint32_t*)ptarget)[7] = 0x0000ff;
@ -49,14 +50,13 @@ extern "C" int scanhash_myriad(int thr_id, uint32_t *pdata, const uint32_t *ptar
// init // init
if(!init[thr_id]) if(!init[thr_id])
{ {
#if BIG_DEBUG cudaSetDevice(device_map[thr_id]);
#else
myriadgroestl_cpu_init(thr_id, throughput); myriadgroestl_cpu_init(thr_id, throughput);
#endif
init[thr_id] = true; init[thr_id] = true;
} }
uint32_t endiandata[32]; uint32_t _ALIGN(64) endiandata[32];
for (int kk=0; kk < 32; kk++) for (int kk=0; kk < 32; kk++)
be32enc(&endiandata[kk], pdata[kk]); be32enc(&endiandata[kk], pdata[kk]);
@ -66,26 +66,23 @@ extern "C" int scanhash_myriad(int thr_id, uint32_t *pdata, const uint32_t *ptar
do { do {
// GPU // GPU
uint32_t foundNounce = UINT32_MAX; uint32_t foundNounce = UINT32_MAX;
const uint32_t Htarg = ptarget[7];
*hashes_done = pdata[19] - start_nonce + throughput;
myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce); myriadgroestl_cpu_hash(thr_id, throughput, pdata[19], outputHash, &foundNounce);
if (foundNounce < UINT32_MAX) if (foundNounce < UINT32_MAX)
{ {
uint32_t tmpHash[8]; uint32_t _ALIGN(64) tmpHash[8];
endiandata[19] = SWAP32(foundNounce); endiandata[19] = SWAP32(foundNounce);
myriadhash(tmpHash, endiandata); myriadhash(tmpHash, endiandata);
if (tmpHash[7] <= Htarg && if (tmpHash[7] <= ptarget[7] && fulltest(tmpHash, ptarget)) {
fulltest(tmpHash, ptarget)) { pdata[19] = foundNounce;
pdata[19] = foundNounce; free(outputHash);
*hashes_done = foundNounce - start_nonce + 1;
free(outputHash);
return true; return true;
} else { } else {
applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNounce); applog(LOG_WARNING, "GPU #%d: result for nonce %08x does not validate on CPU!", device_map[thr_id], foundNounce);
} }
foundNounce = 0xffffffff;
} }
if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) { if ((uint64_t) pdata[19] + throughput > (uint64_t) max_nonce) {
@ -96,7 +93,6 @@ extern "C" int scanhash_myriad(int thr_id, uint32_t *pdata, const uint32_t *ptar
} while (!work_restart[thr_id].restart); } while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - start_nonce + 1;
free(outputHash); free(outputHash);
return 0; return 0;
} }

Loading…
Cancel
Save