//
// Experimental Kernel for Kepler (Compute 3.5) devices
// code submitted by nVidia performance engineer Alexey Panteleev
// with modifications by Christian Buchner
//
// for Compute 3.5
// NOTE: compile this .cu module for compute_35,sm_35 with --maxrregcount=80
// for Compute 3.0
// NOTE: compile this .cu module for compute_30,sm_30 with --maxrregcount=63
//
#include <map>
#include "cuda_runtime.h"
#include "miner.h"
#include "salsa_kernel.h"
#include "nv_kernel.h"
#define THREADS_PER_WU 1 // single thread per hash
#define TEXWIDTH 32768
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define __ldg(x) (*(x))
#endif
// grab lane ID
static __device__ __inline__ unsigned int __laneId() { unsigned int laneId; asm( "mov.u32 %0, %%laneid;" : "=r"( laneId ) ); return laneId; }
// forward references
template <int ALGO> __global__ void nv_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end);
template <int ALGO, int TEX_DIM> __global__ void nv_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end);
template <int ALGO> __global__ void nv_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP);
template <int ALGO, int TEX_DIM> __global__ void nv_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP);
// scratchbuf constants (pointers to scratch buffer for each work unit)
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT];
// using texture references for the "tex" variants of the B kernels
texture<uint4, 1, cudaReadModeElementType> texRef1D_4_V;
texture<uint4, 2, cudaReadModeElementType> texRef2D_4_V;
// iteration count N
__constant__ uint32_t c_N;
__constant__ uint32_t c_N_1; // N - 1
__constant__ uint32_t c_spacing; // (N+LOOKUP_GAP-1)/LOOKUP_GAP
NVKernel::NVKernel() : KernelInterface()
{
}
bool NVKernel::bindtexture_1D(uint32_t *d_V, size_t size)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef1D_4_V.normalized = 0;
texRef1D_4_V.filterMode = cudaFilterModePoint;
texRef1D_4_V.addressMode[0] = cudaAddressModeClamp;
checkCudaErrors(cudaBindTexture(NULL, &texRef1D_4_V, d_V, &channelDesc4, size));
return true;
}
bool NVKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef2D_4_V.normalized = 0;
texRef2D_4_V.filterMode = cudaFilterModePoint;
texRef2D_4_V.addressMode[0] = cudaAddressModeClamp;
texRef2D_4_V.addressMode[1] = cudaAddressModeClamp;
// maintain texture width of TEXWIDTH (max. limit is 65000)
while (width > TEXWIDTH) { width /= 2; height *= 2; pitch /= 2; }
while (width < TEXWIDTH) { width *= 2; height = (height+1)/2; pitch *= 2; }
checkCudaErrors(cudaBindTexture2D(NULL, &texRef2D_4_V, d_V, &channelDesc4, width, height, pitch));
return true;
}
bool NVKernel::unbindtexture_1D()
{
checkCudaErrors(cudaUnbindTexture(texRef1D_4_V));
return true;
}
bool NVKernel::unbindtexture_2D()
{
checkCudaErrors(cudaUnbindTexture(texRef2D_4_V));
return true;
}
void NVKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool NVKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
// make some constants available to kernel, update only initially and when changing
static uint32_t prev_N[MAX_GPUS] = { 0 };
if (N != prev_N[thr_id]) {
uint32_t h_N = N;
uint32_t h_N_1 = N-1;
uint32_t h_spacing = (N+LOOKUP_GAP-1)/LOOKUP_GAP;
cudaMemcpyToSymbolAsync(c_N, &h_N, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_N_1, &h_N_1, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
cudaMemcpyToSymbolAsync(c_spacing, &h_spacing, sizeof(uint32_t), 0, cudaMemcpyHostToDevice, stream);
prev_N[thr_id] = N;
}
// First phase: Sequential writes to scratchpad.
const int batch = device_batchsize[thr_id];
unsigned int pos = 0;
do
{
if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) nv_scrypt_core_kernelA<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N));
}
else {
if (IS_SCRYPT()) nv_scrypt_core_kernelA_LG<A_SCRYPT> <<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, 0, stream >>>(d_idata, pos, min(pos+batch, N), LOOKUP_GAP);
}
pos += batch;
} while (pos < N);
// Second phase: Random read access from scratchpad.
pos = 0;
do
{
if (LOOKUP_GAP == 1) {
if (texture_cache == 0) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB<A_SCRYPT ,0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB<A_SCRYPT_JANE,0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
}
else if (texture_cache == 1) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB<A_SCRYPT ,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB<A_SCRYPT_JANE,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
}
else if (texture_cache == 2) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB<A_SCRYPT ,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB<A_SCRYPT_JANE,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N));
}
} else {
if (texture_cache == 0) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB_LG<A_SCRYPT ,0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB_LG<A_SCRYPT_JANE,0><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
}
else if (texture_cache == 1) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB_LG<A_SCRYPT ,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB_LG<A_SCRYPT_JANE,1><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
}
else if (texture_cache == 2) {
if (IS_SCRYPT()) nv_scrypt_core_kernelB_LG<A_SCRYPT ,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
if (IS_SCRYPT_JANE()) nv_scrypt_core_kernelB_LG<A_SCRYPT_JANE,2><<< grid, threads, 0, stream >>>(d_odata, pos, min(pos+batch, N), LOOKUP_GAP);
}
}
pos += batch;
} while (pos < N);
return success;
}
static __device__ uint4& operator^=(uint4& left, const uint4& right)
{
left.x ^= right.x;
left.y ^= right.y;
left.z ^= right.z;
left.w ^= right.w;
return left;
}
__device__ __forceinline__ uint4 __shfl(const uint4 val, unsigned int lane, unsigned int width)
{
return make_uint4(
(unsigned int)__shfl((int)val.x, lane, width),
(unsigned int)__shfl((int)val.y, lane, width),
(unsigned int)__shfl((int)val.z, lane, width),
(unsigned int)__shfl((int)val.w, lane, width));
}
__device__ __forceinline__ void __transposed_write_BC(uint4 (&B)[4], uint4 (&C)[4], uint4 *D, int spacing)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
uint4 T1[8], T2[8];
/* Source matrix, A-H are threads, 0-7 are data items, thread A is marked with `*`:
*A0 B0 C0 D0 E0 F0 G0 H0
*A1 B1 C1 D1 E1 F1 G1 H1
*A2 B2 C2 D2 E2 F2 G2 H2
*A3 B3 C3 D3 E3 F3 G3 H3
*A4 B4 C4 D4 E4 F4 G4 H4
*A5 B5 C5 D5 E5 F5 G5 H5
*A6 B6 C6 D6 E6 F6 G6 H6
*A7 B7 C7 D7 E7 F7 G7 H7
*/
// rotate rows
T1[0] = B[0];
T1[1] = __shfl(B[1], lane8 + 7, 8);
T1[2] = __shfl(B[2], lane8 + 6, 8);
T1[3] = __shfl(B[3], lane8 + 5, 8);
T1[4] = __shfl(C[0], lane8 + 4, 8);
T1[5] = __shfl(C[1], lane8 + 3, 8);
T1[6] = __shfl(C[2], lane8 + 2, 8);
T1[7] = __shfl(C[3], lane8 + 1, 8);
/* Matrix after row rotates:
*A0 B0 C0 D0 E0 F0 G0 H0
H1 *A1 B1 C1 D1 E1 F1 G1
G2 H2 *A2 B2 C2 D2 E2 F2
F3 G3 H3 *A3 B3 C3 D3 E3
E4 F4 G4 H4 *A4 B4 C4 D4
D5 E5 F5 G5 H5 *A5 B5 C5
C6 D6 E6 F6 G6 H6 *A6 B6
B7 C7 D7 E7 F7 G7 H7 *A7
*/
// rotate columns up using a barrel shifter simulation
// column X is rotated up by (X+1) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((lane8+1) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((lane8+1) & 4) ? T1[(n+4) % 8] : T1[n];
/* Matrix after column rotates:
H1 H2 H3 H4 H5 H6 H7 H0
G2 G3 G4 G5 G6 G7 G0 G1
F3 F4 F5 F6 F7 F0 F1 F2
E4 E5 E6 E7 E0 E1 E2 E3
D5 D6 D7 D0 D1 D2 D3 D4
C6 C7 C0 C1 C2 C3 C4 C5
B7 B0 B1 B2 B3 B4 B5 B6
*A0 *A1 *A2 *A3 *A4 *A5 *A6 *A7
*/
// rotate rows again using address math and write to D, in reverse row order
D[spacing*2*(32*tile )+ lane8 ] = T2[7];
D[spacing*2*(32*tile+4 )+(lane8+7)%8] = T2[6];
D[spacing*2*(32*tile+8 )+(lane8+6)%8] = T2[5];
D[spacing*2*(32*tile+12)+(lane8+5)%8] = T2[4];
D[spacing*2*(32*tile+16)+(lane8+4)%8] = T2[3];
D[spacing*2*(32*tile+20)+(lane8+3)%8] = T2[2];
D[spacing*2*(32*tile+24)+(lane8+2)%8] = T2[1];
D[spacing*2*(32*tile+28)+(lane8+1)%8] = T2[0];
}
template <int TEX_DIM> __device__ __forceinline__ void __transposed_read_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
unsigned int laneId = __laneId();
unsigned int lane8 = laneId%8;
unsigned int tile = laneId/8;
// Perform the same transposition as in __transposed_write_BC, but in reverse order.
// See the illustrations in comments for __transposed_write_BC.
// read and rotate rows, in reverse row order
uint4 T1[8], T2[8];
const uint4 *loc;
loc = &S[(spacing*2*(32*tile ) + lane8 + 8*__shfl(row, 0, 8))];
T1[7] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+4 ) + (lane8+7)%8 + 8*__shfl(row, 1, 8))];
T1[6] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+8 ) + (lane8+6)%8 + 8*__shfl(row, 2, 8))];
T1[5] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+12) + (lane8+5)%8 + 8*__shfl(row, 3, 8))];
T1[4] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+16) + (lane8+4)%8 + 8*__shfl(row, 4, 8))];
T1[3] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+20) + (lane8+3)%8 + 8*__shfl(row, 5, 8))];
T1[2] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+24) + (lane8+2)%8 + 8*__shfl(row, 6, 8))];
T1[1] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
loc = &S[(spacing*2*(32*tile+28) + (lane8+1)%8 + 8*__shfl(row, 7, 8))];
T1[0] = TEX_DIM==0 ? __ldg(loc) : TEX_DIM==1 ? tex1Dfetch(texRef1D_4_V, loc-(uint4*)c_V[0]) : tex2D(texRef2D_4_V, 0.5f + ((loc-(uint4*)c_V[0])%TEXWIDTH), 0.5f + ((loc-(uint4*)c_V[0])/TEXWIDTH));
// rotate columns down using a barrel shifter simulation
// column X is rotated down by (X+1) items, or up by (8-(X+1)) = (7-X) items
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 1) ? T1[(n+1) % 8] : T1[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T1[n] = ((7-lane8) & 2) ? T2[(n+2) % 8] : T2[n];
#pragma unroll 8
for(int n = 0; n < 8; n++) T2[n] = ((7-lane8) & 4) ? T1[(n+4) % 8] : T1[n];
// rotate rows
B[0] = T2[0];
B[1] = __shfl(T2[1], lane8 + 1, 8);
B[2] = __shfl(T2[2], lane8 + 2, 8);
B[3] = __shfl(T2[3], lane8 + 3, 8);
C[0] = __shfl(T2[4], lane8 + 4, 8);
C[1] = __shfl(T2[5], lane8 + 5, 8);
C[2] = __shfl(T2[6], lane8 + 6, 8);
C[3] = __shfl(T2[7], lane8 + 7, 8);
}
template <int TEX_DIM> __device__ __forceinline__ void __transposed_xor_BC(const uint4 *S, uint4 (&B)[4], uint4 (&C)[4], int spacing, int row)
{
uint4 BT[4], CT[4];
__transposed_read_BC<TEX_DIM>(S, BT, CT, spacing, row);
#pragma unroll 4
for(int n = 0; n < 4; n++)
{
B[n] ^= BT[n];
C[n] ^= CT[n];
}
}
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define ROTL(a, b) ((a)<<(b))|((a)>>(32-(b)))
#else
// Kepler (Compute 3.5)
#define ROTL(a, b) __funnelshift_l( a, a, b );
#endif
#if 0
#define QUARTER(a,b,c,d) \
a += b; d ^= a; d = ROTL(d,16); \
c += d; b ^= c; b = ROTL(b,12); \
a += b; d ^= a; d = ROTL(d,8); \
c += d; b ^= c; b = ROTL(b,7);
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#else
#define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 += s1; d2 += s2; d3 += s3; d4 += s4;
#define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4;
#define ROTL4(d1,d2,d3,d4,amt) \
d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt);
#define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \
ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \
XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \
ROTL4(b1,b2,b3,b4, amt)
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#endif
#define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 7); a1^=ROTL(a10, 7); a2^=ROTL(a20, 7); a3^=ROTL(a30, 7);\
};\
#define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 9); a1^=ROTL(a10, 9); a2^=ROTL(a20, 9); a3^=ROTL(a30, 9);\
};\
#define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 13); a1^=ROTL(a10, 13); a2^=ROTL(a20, 13); a3^=ROTL(a30, 13);\
};\
#define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=ROTL(a00, 18); a1^=ROTL(a10, 18); a2^=ROTL(a20, 18); a3^=ROTL(a30, 18);\
};\
static __device__ void xor_salsa8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
template <int ALGO> static __device__ void block_mixer(uint4 *B, uint4 *C)
{
switch (ALGO) {
case A_SCRYPT: xor_salsa8(B, C); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); break;
}
}
////////////////////////////////////////////////////////////////////////////////
//! Experimental Scrypt core kernel for Kepler devices.
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
template <int ALGO> __global__
void nv_scrypt_core_kernelA(uint32_t *g_idata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC<0>((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_N);
++i;
} else
__transposed_read_BC<0>((uint4*)(V + (i-1)*32), B, C, c_N, 0);
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
__transposed_write_BC(B, C, (uint4*)(V + i*32), c_N);
++i;
}
}
template <int ALGO> __global__
void nv_scrypt_core_kernelA_LG(uint32_t *g_idata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
int i = begin;
if(i == 0) {
__transposed_read_BC<0>((uint4*)g_idata, B, C, 1, 0);
__transposed_write_BC(B, C, (uint4*)V, c_spacing);
++i;
} else {
int pos = (i-1)/LOOKUP_GAP, loop = (i-1)-pos*LOOKUP_GAP;
__transposed_read_BC<0>((uint4*)(V + pos*32), B, C, c_spacing, 0);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
}
while(i < end) {
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
if (i % LOOKUP_GAP == 0)
__transposed_write_BC(B, C, (uint4*)(V + (i/LOOKUP_GAP)*32), c_spacing);
++i;
}
}
template <int ALGO, int TEX_DIM>__global__
void nv_scrypt_core_kernelB(uint32_t *g_odata, int begin, int end)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
__transposed_read_BC<TEX_DIM>((uint4*)V, B, C, c_N, c_N_1);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
} else
__transposed_read_BC<0>((uint4*)g_odata, B, C, 1, 0);
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
__transposed_xor_BC<TEX_DIM>((uint4*)(V), B, C, c_N, slot);
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
template <int ALGO, int TEX_DIM> __global__
void nv_scrypt_core_kernelB_LG(uint32_t *g_odata, int begin, int end, unsigned int LOOKUP_GAP)
{
int offset = blockIdx.x * blockDim.x + threadIdx.x / warpSize * warpSize;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / warpSize];
uint4 B[4], C[4];
if(begin == 0) {
int pos = c_N_1/LOOKUP_GAP, loop = 1 + (c_N_1-pos*LOOKUP_GAP);
__transposed_read_BC<TEX_DIM>((uint4*)V, B, C, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B); }
} else {
__transposed_read_BC<TEX_DIM>((uint4*)g_odata, B, C, 1, 0);
}
for (int i = begin; i < end; i++) {
int slot = C[0].x & c_N_1;
int pos = slot/LOOKUP_GAP, loop = slot-pos*LOOKUP_GAP;
uint4 b[4], c[4]; __transposed_read_BC<TEX_DIM>((uint4*)(V), b, c, c_spacing, pos);
while(loop--) { block_mixer<ALGO>(b, c); block_mixer<ALGO>(c, b); }
#pragma unroll 4
for(int n = 0; n < 4; n++) { B[n] ^= b[n]; C[n] ^= c[n]; }
block_mixer<ALGO>(B, C); block_mixer<ALGO>(C, B);
}
__transposed_write_BC(B, C, (uint4*)(g_odata), 1);
}
//
// Maxcoin related Keccak implementation (Keccak256)
//
// from salsa_kernel.cu
extern std::map<int, int> context_blocks;
extern std::map<int, int> context_wpb;
extern std::map<int, KernelInterface *> context_kernel;
extern std::map<int, cudaStream_t> context_streams[2];
extern std::map<int, uint32_t *> context_hash[2];
__constant__ uint64_t ptarget64[4];
#define ROL(a, offset) ((((uint64_t)a) << ((offset) % 64)) ^ (((uint64_t)a) >> (64-((offset) % 64))))
#define ROL_mult8(a, offset) ROL(a, offset)
__constant__ uint64_t KeccakF_RoundConstants[24];
static uint64_t host_KeccakF_RoundConstants[24] = {
(uint64_t)0x0000000000000001ULL,
(uint64_t)0x0000000000008082ULL,
(uint64_t)0x800000000000808aULL,
(uint64_t)0x8000000080008000ULL,
(uint64_t)0x000000000000808bULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008009ULL,
(uint64_t)0x000000000000008aULL,
(uint64_t)0x0000000000000088ULL,
(uint64_t)0x0000000080008009ULL,
(uint64_t)0x000000008000000aULL,
(uint64_t)0x000000008000808bULL,
(uint64_t)0x800000000000008bULL,
(uint64_t)0x8000000000008089ULL,
(uint64_t)0x8000000000008003ULL,
(uint64_t)0x8000000000008002ULL,
(uint64_t)0x8000000000000080ULL,
(uint64_t)0x000000000000800aULL,
(uint64_t)0x800000008000000aULL,
(uint64_t)0x8000000080008081ULL,
(uint64_t)0x8000000000008080ULL,
(uint64_t)0x0000000080000001ULL,
(uint64_t)0x8000000080008008ULL
};
__constant__ uint64_t pdata64[10];
static __device__ uint32_t cuda_swab32(uint32_t x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
__global__
void kepler_crypto_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate )
{
uint64_t Aba, Abe, Abi, Abo, Abu;
uint64_t Aga, Age, Agi, Ago, Agu;
uint64_t Aka, Ake, Aki, Ako, Aku;
uint64_t Ama, Ame, Ami, Amo, Amu;
uint64_t Asa, Ase, Asi, Aso, Asu;
uint64_t BCa, BCe, BCi, BCo, BCu;
uint64_t Da, De, Di, Do, Du;
uint64_t Eba, Ebe, Ebi, Ebo, Ebu;
uint64_t Ega, Ege, Egi, Ego, Egu;
uint64_t Eka, Eke, Eki, Eko, Eku;
uint64_t Ema, Eme, Emi, Emo, Emu;
uint64_t Esa, Ese, Esi, Eso, Esu;
//copyFromState(A, state)
Aba = pdata64[0];
Abe = pdata64[1];
Abi = pdata64[2];
Abo = pdata64[3];
Abu = pdata64[4];
Aga = pdata64[5];
Age = pdata64[6];
Agi = pdata64[7];
Ago = pdata64[8];
Agu = (pdata64[9] & 0x00000000FFFFFFFFULL) | (((uint64_t)cuda_swab32(nonce + ((blockIdx.x * blockDim.x) + threadIdx.x))) << 32);
Aka = 0x0000000000000001ULL;
Ake = 0;
Aki = 0;
Ako = 0;
Aku = 0;
Ama = 0;
Ame = 0x8000000000000000ULL;
Ami = 0;
Amo = 0;
Amu = 0;
Asa = 0;
Ase = 0;
Asi = 0;
Aso = 0;
Asu = 0;
#pragma unroll 12
for( int laneCount = 0; laneCount < 24; laneCount += 2 )
{
// prepareTheta
BCa = Aba^Aga^Aka^Ama^Asa;
BCe = Abe^Age^Ake^Ame^Ase;
BCi = Abi^Agi^Aki^Ami^Asi;
BCo = Abo^Ago^Ako^Amo^Aso;
BCu = Abu^Agu^Aku^Amu^Asu;
//thetaRhoPiChiIotaPrepareTheta(round , A, E)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Aba ^= Da;
BCa = Aba;
Age ^= De;
BCe = ROL(Age, 44);
Aki ^= Di;
BCi = ROL(Aki, 43);
Amo ^= Do;
BCo = ROL(Amo, 21);
Asu ^= Du;
BCu = ROL(Asu, 14);
Eba = BCa ^((~BCe)& BCi );
Eba ^= (uint64_t)KeccakF_RoundConstants[laneCount];
Ebe = BCe ^((~BCi)& BCo );
Ebi = BCi ^((~BCo)& BCu );
Ebo = BCo ^((~BCu)& BCa );
Ebu = BCu ^((~BCa)& BCe );
Abo ^= Do;
BCa = ROL(Abo, 28);
Agu ^= Du;
BCe = ROL(Agu, 20);
Aka ^= Da;
BCi = ROL(Aka, 3);
Ame ^= De;
BCo = ROL(Ame, 45);
Asi ^= Di;
BCu = ROL(Asi, 61);
Ega = BCa ^((~BCe)& BCi );
Ege = BCe ^((~BCi)& BCo );
Egi = BCi ^((~BCo)& BCu );
Ego = BCo ^((~BCu)& BCa );
Egu = BCu ^((~BCa)& BCe );
Abe ^= De;
BCa = ROL(Abe, 1);
Agi ^= Di;
BCe = ROL(Agi, 6);
Ako ^= Do;
BCi = ROL(Ako, 25);
Amu ^= Du;
BCo = ROL_mult8(Amu, 8);
Asa ^= Da;
BCu = ROL(Asa, 18);
Eka = BCa ^((~BCe)& BCi );
Eke = BCe ^((~BCi)& BCo );
Eki = BCi ^((~BCo)& BCu );
Eko = BCo ^((~BCu)& BCa );
Eku = BCu ^((~BCa)& BCe );
Abu ^= Du;
BCa = ROL(Abu, 27);
Aga ^= Da;
BCe = ROL(Aga, 36);
Ake ^= De;
BCi = ROL(Ake, 10);
Ami ^= Di;
BCo = ROL(Ami, 15);
Aso ^= Do;
BCu = ROL_mult8(Aso, 56);
Ema = BCa ^((~BCe)& BCi );
Eme = BCe ^((~BCi)& BCo );
Emi = BCi ^((~BCo)& BCu );
Emo = BCo ^((~BCu)& BCa );
Emu = BCu ^((~BCa)& BCe );
Abi ^= Di;
BCa = ROL(Abi, 62);
Ago ^= Do;
BCe = ROL(Ago, 55);
Aku ^= Du;
BCi = ROL(Aku, 39);
Ama ^= Da;
BCo = ROL(Ama, 41);
Ase ^= De;
BCu = ROL(Ase, 2);
Esa = BCa ^((~BCe)& BCi );
Ese = BCe ^((~BCi)& BCo );
Esi = BCi ^((~BCo)& BCu );
Eso = BCo ^((~BCu)& BCa );
Esu = BCu ^((~BCa)& BCe );
// prepareTheta
BCa = Eba^Ega^Eka^Ema^Esa;
BCe = Ebe^Ege^Eke^Eme^Ese;
BCi = Ebi^Egi^Eki^Emi^Esi;
BCo = Ebo^Ego^Eko^Emo^Eso;
BCu = Ebu^Egu^Eku^Emu^Esu;
//thetaRhoPiChiIotaPrepareTheta(round+1, E, A)
Da = BCu^ROL(BCe, 1);
De = BCa^ROL(BCi, 1);
Di = BCe^ROL(BCo, 1);
Do = BCi^ROL(BCu, 1);
Du = BCo^ROL(BCa, 1);
Eba ^= Da;
BCa = Eba;
Ege ^= De;
BCe = ROL(Ege, 44);
Eki ^= Di;
BCi = ROL(Eki, 43);
Emo ^= Do;
BCo = ROL(Emo, 21);
Esu ^= Du;
BCu = ROL(Esu, 14);
Aba = BCa ^((~BCe)& BCi );
Aba ^= (uint64_t)KeccakF_RoundConstants[laneCount+1];
Abe = BCe ^((~BCi)& BCo );
Abi = BCi ^((~BCo)& BCu );
Abo = BCo ^((~BCu)& BCa );
Abu = BCu ^((~BCa)& BCe );
Ebo ^= Do;
BCa = ROL(Ebo, 28);
Egu ^= Du;
BCe = ROL(Egu, 20);
Eka ^= Da;
BCi = ROL(Eka, 3);
Eme ^= De;
BCo = ROL(Eme, 45);
Esi ^= Di;
BCu = ROL(Esi, 61);
Aga = BCa ^((~BCe)& BCi );
Age = BCe ^((~BCi)& BCo );
Agi = BCi ^((~BCo)& BCu );
Ago = BCo ^((~BCu)& BCa );
Agu = BCu ^((~BCa)& BCe );
Ebe ^= De;
BCa = ROL(Ebe, 1);
Egi ^= Di;
BCe = ROL(Egi, 6);
Eko ^= Do;
BCi = ROL(Eko, 25);
Emu ^= Du;
BCo = ROL_mult8(Emu, 8);
Esa ^= Da;
BCu = ROL(Esa, 18);
Aka = BCa ^((~BCe)& BCi );
Ake = BCe ^((~BCi)& BCo );
Aki = BCi ^((~BCo)& BCu );
Ako = BCo ^((~BCu)& BCa );
Aku = BCu ^((~BCa)& BCe );
Ebu ^= Du;
BCa = ROL(Ebu, 27);
Ega ^= Da;
BCe = ROL(Ega, 36);
Eke ^= De;
BCi = ROL(Eke, 10);
Emi ^= Di;
BCo = ROL(Emi, 15);
Eso ^= Do;
BCu = ROL_mult8(Eso, 56);
Ama = BCa ^((~BCe)& BCi );
Ame = BCe ^((~BCi)& BCo );
Ami = BCi ^((~BCo)& BCu );
Amo = BCo ^((~BCu)& BCa );
Amu = BCu ^((~BCa)& BCe );
Ebi ^= Di;
BCa = ROL(Ebi, 62);
Ego ^= Do;
BCe = ROL(Ego, 55);
Eku ^= Du;
BCi = ROL(Eku, 39);
Ema ^= Da;
BCo = ROL(Ema, 41);
Ese ^= De;
BCu = ROL(Ese, 2);
Asa = BCa ^((~BCe)& BCi );
Ase = BCe ^((~BCi)& BCo );
Asi = BCi ^((~BCo)& BCu );
Aso = BCo ^((~BCu)& BCa );
Asu = BCu ^((~BCa)& BCe );
}
if (validate) {
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
g_out[3] = Abo;
g_out[2] = Abi;
g_out[1] = Abe;
g_out[0] = Aba;
}
// the likelyhood of meeting the hashing target is so low, that we're not guarding this
// with atomic writes, locks or similar...
uint64_t *g_good64 = (uint64_t*)g_good;
if (Abo <= ptarget64[3]) {
if (Abo < g_good64[3]) {
g_good64[3] = Abo;
g_good64[2] = Abi;
g_good64[1] = Abe;
g_good64[0] = Aba;
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
static std::map<int, uint32_t *> context_good[2];
bool NVKernel::prepare_keccak256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
checkCudaErrors(cudaMemcpyToSymbol(KeccakF_RoundConstants, host_KeccakF_RoundConstants, sizeof(host_KeccakF_RoundConstants), 0, cudaMemcpyHostToDevice));
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata64, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void NVKernel::do_keccak256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
kepler_crypto_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}
//
// Blakecoin related Keccak implementation (Keccak256)
//
typedef uint32_t sph_u32;
#define SPH_C32(x) ((sph_u32)(x))
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
#if __CUDA_ARCH__ < 350
// Kepler (Compute 3.0)
#define SPH_ROTL32(a, b) ((a)<<(b))|((a)>>(32-(b)))
#else
// Kepler (Compute 3.5)
#define SPH_ROTL32(a, b) __funnelshift_l( a, a, b );
#endif
#define SPH_ROTR32(x, n) SPH_ROTL32(x, (32 - (n)))
__constant__ uint32_t pdata[20];
#ifdef _MSC_VER
#pragma warning (disable: 4146)
#endif
static __device__ sph_u32 cuda_sph_bswap32(sph_u32 x)
{
return (((x << 24) & 0xff000000u) | ((x << 8) & 0x00ff0000u)
| ((x >> 8) & 0x0000ff00u) | ((x >> 24) & 0x000000ffu));
}
/**
* Encode a 32-bit value into the provided buffer (big endian convention).
*
* @param dst the destination buffer
* @param val the 32-bit value to encode
*/
static __device__ void
cuda_sph_enc32be(void *dst, sph_u32 val)
{
*(sph_u32 *)dst = cuda_sph_bswap32(val);
}
#define Z00 0
#define Z01 1
#define Z02 2
#define Z03 3
#define Z04 4
#define Z05 5
#define Z06 6
#define Z07 7
#define Z08 8
#define Z09 9
#define Z0A A
#define Z0B B
#define Z0C C
#define Z0D D
#define Z0E E
#define Z0F F
#define Z10 E
#define Z11 A
#define Z12 4
#define Z13 8
#define Z14 9
#define Z15 F
#define Z16 D
#define Z17 6
#define Z18 1
#define Z19 C
#define Z1A 0
#define Z1B 2
#define Z1C B
#define Z1D 7
#define Z1E 5
#define Z1F 3
#define Z20 B
#define Z21 8
#define Z22 C
#define Z23 0
#define Z24 5
#define Z25 2
#define Z26 F
#define Z27 D
#define Z28 A
#define Z29 E
#define Z2A 3
#define Z2B 6
#define Z2C 7
#define Z2D 1
#define Z2E 9
#define Z2F 4
#define Z30 7
#define Z31 9
#define Z32 3
#define Z33 1
#define Z34 D
#define Z35 C
#define Z36 B
#define Z37 E
#define Z38 2
#define Z39 6
#define Z3A 5
#define Z3B A
#define Z3C 4
#define Z3D 0
#define Z3E F
#define Z3F 8
#define Z40 9
#define Z41 0
#define Z42 5
#define Z43 7
#define Z44 2
#define Z45 4
#define Z46 A
#define Z47 F
#define Z48 E
#define Z49 1
#define Z4A B
#define Z4B C
#define Z4C 6
#define Z4D 8
#define Z4E 3
#define Z4F D
#define Z50 2
#define Z51 C
#define Z52 6
#define Z53 A
#define Z54 0
#define Z55 B
#define Z56 8
#define Z57 3
#define Z58 4
#define Z59 D
#define Z5A 7
#define Z5B 5
#define Z5C F
#define Z5D E
#define Z5E 1
#define Z5F 9
#define Z60 C
#define Z61 5
#define Z62 1
#define Z63 F
#define Z64 E
#define Z65 D
#define Z66 4
#define Z67 A
#define Z68 0
#define Z69 7
#define Z6A 6
#define Z6B 3
#define Z6C 9
#define Z6D 2
#define Z6E 8
#define Z6F B
#define Z70 D
#define Z71 B
#define Z72 7
#define Z73 E
#define Z74 C
#define Z75 1
#define Z76 3
#define Z77 9
#define Z78 5
#define Z79 0
#define Z7A F
#define Z7B 4
#define Z7C 8
#define Z7D 6
#define Z7E 2
#define Z7F A
#define Z80 6
#define Z81 F
#define Z82 E
#define Z83 9
#define Z84 B
#define Z85 3
#define Z86 0
#define Z87 8
#define Z88 C
#define Z89 2
#define Z8A D
#define Z8B 7
#define Z8C 1
#define Z8D 4
#define Z8E A
#define Z8F 5
#define Z90 A
#define Z91 2
#define Z92 8
#define Z93 4
#define Z94 7
#define Z95 6
#define Z96 1
#define Z97 5
#define Z98 F
#define Z99 B
#define Z9A 9
#define Z9B E
#define Z9C 3
#define Z9D C
#define Z9E D
#define Z9F 0
#define Mx(r, i) Mx_(Z ## r ## i)
#define Mx_(n) Mx__(n)
#define Mx__(n) M ## n
#define CSx(r, i) CSx_(Z ## r ## i)
#define CSx_(n) CSx__(n)
#define CSx__(n) CS ## n
#define CS0 SPH_C32(0x243F6A88)
#define CS1 SPH_C32(0x85A308D3)
#define CS2 SPH_C32(0x13198A2E)
#define CS3 SPH_C32(0x03707344)
#define CS4 SPH_C32(0xA4093822)
#define CS5 SPH_C32(0x299F31D0)
#define CS6 SPH_C32(0x082EFA98)
#define CS7 SPH_C32(0xEC4E6C89)
#define CS8 SPH_C32(0x452821E6)
#define CS9 SPH_C32(0x38D01377)
#define CSA SPH_C32(0xBE5466CF)
#define CSB SPH_C32(0x34E90C6C)
#define CSC SPH_C32(0xC0AC29B7)
#define CSD SPH_C32(0xC97C50DD)
#define CSE SPH_C32(0x3F84D5B5)
#define CSF SPH_C32(0xB5470917)
#define GS(m0, m1, c0, c1, a, b, c, d) do { \
a = SPH_T32(a + b + (m0 ^ c1)); \
d = SPH_ROTR32(d ^ a, 16); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 12); \
a = SPH_T32(a + b + (m1 ^ c0)); \
d = SPH_ROTR32(d ^ a, 8); \
c = SPH_T32(c + d); \
b = SPH_ROTR32(b ^ c, 7); \
} while (0)
#define ROUND_S(r) do { \
GS(Mx(r, 0), Mx(r, 1), CSx(r, 0), CSx(r, 1), V0, V4, V8, VC); \
GS(Mx(r, 2), Mx(r, 3), CSx(r, 2), CSx(r, 3), V1, V5, V9, VD); \
GS(Mx(r, 4), Mx(r, 5), CSx(r, 4), CSx(r, 5), V2, V6, VA, VE); \
GS(Mx(r, 6), Mx(r, 7), CSx(r, 6), CSx(r, 7), V3, V7, VB, VF); \
GS(Mx(r, 8), Mx(r, 9), CSx(r, 8), CSx(r, 9), V0, V5, VA, VF); \
GS(Mx(r, A), Mx(r, B), CSx(r, A), CSx(r, B), V1, V6, VB, VC); \
GS(Mx(r, C), Mx(r, D), CSx(r, C), CSx(r, D), V2, V7, V8, VD); \
GS(Mx(r, E), Mx(r, F), CSx(r, E), CSx(r, F), V3, V4, V9, VE); \
} while (0)
#define COMPRESS32 do { \
sph_u32 M0, M1, M2, M3, M4, M5, M6, M7; \
sph_u32 M8, M9, MA, MB, MC, MD, ME, MF; \
sph_u32 V0, V1, V2, V3, V4, V5, V6, V7; \
sph_u32 V8, V9, VA, VB, VC, VD, VE, VF; \
V0 = H0; \
V1 = H1; \
V2 = H2; \
V3 = H3; \
V4 = H4; \
V5 = H5; \
V6 = H6; \
V7 = H7; \
V8 = S0 ^ CS0; \
V9 = S1 ^ CS1; \
VA = S2 ^ CS2; \
VB = S3 ^ CS3; \
VC = T0 ^ CS4; \
VD = T0 ^ CS5; \
VE = T1 ^ CS6; \
VF = T1 ^ CS7; \
M0 = input[0]; \
M1 = input[1]; \
M2 = input[2]; \
M3 = input[3]; \
M4 = input[4]; \
M5 = input[5]; \
M6 = input[6]; \
M7 = input[7]; \
M8 = input[8]; \
M9 = input[9]; \
MA = input[10]; \
MB = input[11]; \
MC = input[12]; \
MD = input[13]; \
ME = input[14]; \
MF = input[15]; \
ROUND_S(0); \
ROUND_S(1); \
ROUND_S(2); \
ROUND_S(3); \
ROUND_S(4); \
ROUND_S(5); \
ROUND_S(6); \
ROUND_S(7); \
H0 ^= S0 ^ V0 ^ V8; \
H1 ^= S1 ^ V1 ^ V9; \
H2 ^= S2 ^ V2 ^ VA; \
H3 ^= S3 ^ V3 ^ VB; \
H4 ^= S0 ^ V4 ^ VC; \
H5 ^= S1 ^ V5 ^ VD; \
H6 ^= S2 ^ V6 ^ VE; \
H7 ^= S3 ^ V7 ^ VF; \
} while (0)
__global__
void kepler_blake256_hash( uint64_t *g_out, uint32_t nonce, uint32_t *g_good, bool validate)
{
uint32_t input[16];
uint64_t output[4];
#pragma unroll
for (int i=0; i < 16; ++i) input[i] = pdata[i];
sph_u32 H0 = 0x6A09E667;
sph_u32 H1 = 0xBB67AE85;
sph_u32 H2 = 0x3C6EF372;
sph_u32 H3 = 0xA54FF53A;
sph_u32 H4 = 0x510E527F;
sph_u32 H5 = 0x9B05688C;
sph_u32 H6 = 0x1F83D9AB;
sph_u32 H7 = 0x5BE0CD19;
sph_u32 S0 = 0;
sph_u32 S1 = 0;
sph_u32 S2 = 0;
sph_u32 S3 = 0;
sph_u32 T0 = 0;
sph_u32 T1 = 0;
T0 = SPH_T32(T0 + 512);
COMPRESS32;
#pragma unroll
for (int i=0; i < 3; ++i) input[i] = pdata[16+i];
input[3] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
input[4] = 0x80000000;
#pragma unroll 8
for (int i=5; i < 13; ++i) input[i] = 0;
input[13] = 0x00000001;
input[14] = T1;
input[15] = T0 + 128;
T0 = SPH_T32(T0 + 128);
COMPRESS32;
cuda_sph_enc32be((unsigned char*)output + 4*6, H6);
cuda_sph_enc32be((unsigned char*)output + 4*7, H7);
if (validate || output[3] <= ptarget64[3])
{
// this data is only needed when we actually need to save the hashes
cuda_sph_enc32be((unsigned char*)output + 4*0, H0);
cuda_sph_enc32be((unsigned char*)output + 4*1, H1);
cuda_sph_enc32be((unsigned char*)output + 4*2, H2);
cuda_sph_enc32be((unsigned char*)output + 4*3, H3);
cuda_sph_enc32be((unsigned char*)output + 4*4, H4);
cuda_sph_enc32be((unsigned char*)output + 4*5, H5);
}
if (validate)
{
g_out += 4 * ((blockIdx.x * blockDim.x) + threadIdx.x);
#pragma unroll
for (int i=0; i < 4; ++i) g_out[i] = output[i];
}
if (output[3] <= ptarget64[3]) {
uint64_t *g_good64 = (uint64_t*)g_good;
if (output[3] < g_good64[3]) {
g_good64[3] = output[3];
g_good64[2] = output[2];
g_good64[1] = output[1];
g_good64[0] = output[0];
g_good[8] = nonce + ((blockIdx.x * blockDim.x) + threadIdx.x);
}
}
}
bool NVKernel::prepare_blake256(int thr_id, const uint32_t host_pdata[20], const uint32_t host_ptarget[8])
{
static bool init[MAX_GPUS] = { 0 };
if (!init[thr_id])
{
// allocate pinned host memory for good hashes
uint32_t *tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[0][thr_id] = tmp;
checkCudaErrors(cudaMalloc((void **) &tmp, 9*sizeof(uint32_t))); context_good[1][thr_id] = tmp;
init[thr_id] = true;
}
checkCudaErrors(cudaMemcpyToSymbol(pdata, host_pdata, 20*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpyToSymbol(ptarget64, host_ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
return context_good[0][thr_id] && context_good[1][thr_id];
}
void NVKernel::do_blake256(dim3 grid, dim3 threads, int thr_id, int stream, uint32_t *hash, uint32_t nonce, int throughput, bool do_d2h)
{
checkCudaErrors(cudaMemsetAsync(context_good[stream][thr_id], 0xff, 9 * sizeof(uint32_t), context_streams[stream][thr_id]));
kepler_blake256_hash<<<grid, threads, 0, context_streams[stream][thr_id]>>>((uint64_t*)context_hash[stream][thr_id], nonce, context_good[stream][thr_id], do_d2h);
// copy hashes from device memory to host (ALL hashes, lots of data...)
if (do_d2h && hash != NULL) {
size_t mem_size = throughput * sizeof(uint32_t) * 8;
checkCudaErrors(cudaMemcpyAsync(hash, context_hash[stream][thr_id], mem_size,
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
else if (hash != NULL) {
// asynchronous copy of winning nonce (just 4 bytes...)
checkCudaErrors(cudaMemcpyAsync(hash, context_good[stream][thr_id]+8, sizeof(uint32_t),
cudaMemcpyDeviceToHost, context_streams[stream][thr_id]));
}
}