|
|
|
#include <memory.h>
|
|
|
|
|
|
|
|
#define SPH_C32(x) ((uint32_t)(x ## U))
|
|
|
|
#define SPH_T32(x) ((x) & SPH_C32(0xFFFFFFFF))
|
|
|
|
|
|
|
|
#include "cuda_helper.h"
|
|
|
|
|
|
|
|
uint32_t *d_gnounce[MAX_GPUS];
|
|
|
|
uint32_t *d_GNonce[MAX_GPUS];
|
|
|
|
|
|
|
|
__constant__ uint32_t pTarget[8];
|
|
|
|
|
|
|
|
#define C32e(x) \
|
|
|
|
((SPH_C32(x) >> 24) \
|
|
|
|
| ((SPH_C32(x) >> 8) & SPH_C32(0x0000FF00)) \
|
|
|
|
| ((SPH_C32(x) << 8) & SPH_C32(0x00FF0000)) \
|
|
|
|
| ((SPH_C32(x) << 24) & SPH_C32(0xFF000000)))
|
|
|
|
|
|
|
|
#define PC32up(j, r) ((uint32_t)((j) + (r)))
|
|
|
|
#define PC32dn(j, r) 0
|
|
|
|
#define QC32up(j, r) 0xFFFFFFFF
|
|
|
|
#define QC32dn(j, r) (((uint32_t)(r) << 24) ^ SPH_T32(~((uint32_t)(j) << 24)))
|
|
|
|
|
|
|
|
#define B32_0(x) __byte_perm(x, 0, 0x4440)
|
|
|
|
//((x) & 0xFF)
|
|
|
|
#define B32_1(x) __byte_perm(x, 0, 0x4441)
|
|
|
|
//(((x) >> 8) & 0xFF)
|
|
|
|
#define B32_2(x) __byte_perm(x, 0, 0x4442)
|
|
|
|
//(((x) >> 16) & 0xFF)
|
|
|
|
#define B32_3(x) __byte_perm(x, 0, 0x4443)
|
|
|
|
//((x) >> 24)
|
|
|
|
|
|
|
|
#define MAXWELL_OR_FERMI 1
|
|
|
|
#if MAXWELL_OR_FERMI
|
|
|
|
#define USE_SHARED 1
|
|
|
|
// Maxwell and Fermi cards get the best speed with SHARED access it seems.
|
|
|
|
#if USE_SHARED
|
|
|
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
|
|
|
#define T0dn(x) (*((uint32_t*)mixtabs + (256+(x))))
|
|
|
|
#define T1up(x) (*((uint32_t*)mixtabs + (512+(x))))
|
|
|
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
|
|
|
#define T2up(x) (*((uint32_t*)mixtabs + (1024+(x))))
|
|
|
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
|
|
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
|
|
|
#define T3dn(x) (*((uint32_t*)mixtabs + (1792+(x))))
|
|
|
|
#else
|
|
|
|
#define T0up(x) tex1Dfetch(t0up2, x)
|
|
|
|
#define T0dn(x) tex1Dfetch(t0dn2, x)
|
|
|
|
#define T1up(x) tex1Dfetch(t1up2, x)
|
|
|
|
#define T1dn(x) tex1Dfetch(t1dn2, x)
|
|
|
|
#define T2up(x) tex1Dfetch(t2up2, x)
|
|
|
|
#define T2dn(x) tex1Dfetch(t2dn2, x)
|
|
|
|
#define T3up(x) tex1Dfetch(t3up2, x)
|
|
|
|
#define T3dn(x) tex1Dfetch(t3dn2, x)
|
|
|
|
#endif
|
|
|
|
#else
|
|
|
|
#define USE_SHARED 1
|
|
|
|
// a healthy mix between shared and textured access provides the highest speed on Compute 3.0 and 3.5!
|
|
|
|
#define T0up(x) (*((uint32_t*)mixtabs + ( (x))))
|
|
|
|
#define T0dn(x) tex1Dfetch(t0dn2, x)
|
|
|
|
#define T1up(x) tex1Dfetch(t1up2, x)
|
|
|
|
#define T1dn(x) (*((uint32_t*)mixtabs + (768+(x))))
|
|
|
|
#define T2up(x) tex1Dfetch(t2up2, x)
|
|
|
|
#define T2dn(x) (*((uint32_t*)mixtabs + (1280+(x))))
|
|
|
|
#define T3up(x) (*((uint32_t*)mixtabs + (1536+(x))))
|
|
|
|
#define T3dn(x) tex1Dfetch(t3dn2, x)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t0up2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t0dn2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t1up2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t1dn2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t2up2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t2dn2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t3up2;
|
|
|
|
texture<unsigned int, 1, cudaReadModeElementType> t3dn2;
|
|
|
|
|
|
|
|
#define RSTT(d0, d1, a, b0, b1, b2, b3, b4, b5, b6, b7) do { \
|
|
|
|
t[d0] = T0up(B32_0(a[b0])) \
|
|
|
|
^ T1up(B32_1(a[b1])) \
|
|
|
|
^ T2up(B32_2(a[b2])) \
|
|
|
|
^ T3up(B32_3(a[b3])) \
|
|
|
|
^ T0dn(B32_0(a[b4])) \
|
|
|
|
^ T1dn(B32_1(a[b5])) \
|
|
|
|
^ T2dn(B32_2(a[b6])) \
|
|
|
|
^ T3dn(B32_3(a[b7])); \
|
|
|
|
t[d1] = T0dn(B32_0(a[b0])) \
|
|
|
|
^ T1dn(B32_1(a[b1])) \
|
|
|
|
^ T2dn(B32_2(a[b2])) \
|
|
|
|
^ T3dn(B32_3(a[b3])) \
|
|
|
|
^ T0up(B32_0(a[b4])) \
|
|
|
|
^ T1up(B32_1(a[b5])) \
|
|
|
|
^ T2up(B32_2(a[b6])) \
|
|
|
|
^ T3up(B32_3(a[b7])); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
|
|
|
|
extern uint32_t T0up_cpu[];
|
|
|
|
extern uint32_t T0dn_cpu[];
|
|
|
|
extern uint32_t T1up_cpu[];
|
|
|
|
extern uint32_t T1dn_cpu[];
|
|
|
|
extern uint32_t T2up_cpu[];
|
|
|
|
extern uint32_t T2dn_cpu[];
|
|
|
|
extern uint32_t T3up_cpu[];
|
|
|
|
extern uint32_t T3dn_cpu[];
|
|
|
|
|
|
|
|
__device__ __forceinline__
|
|
|
|
void groestl256_perm_P(uint32_t thread,uint32_t *a, char *mixtabs)
|
|
|
|
{
|
|
|
|
#pragma unroll 10
|
|
|
|
for (int r = 0; r<10; r++)
|
|
|
|
{
|
|
|
|
uint32_t t[16];
|
|
|
|
|
|
|
|
a[0x0] ^= PC32up(0x00, r);
|
|
|
|
a[0x2] ^= PC32up(0x10, r);
|
|
|
|
a[0x4] ^= PC32up(0x20, r);
|
|
|
|
a[0x6] ^= PC32up(0x30, r);
|
|
|
|
a[0x8] ^= PC32up(0x40, r);
|
|
|
|
a[0xA] ^= PC32up(0x50, r);
|
|
|
|
a[0xC] ^= PC32up(0x60, r);
|
|
|
|
a[0xE] ^= PC32up(0x70, r);
|
|
|
|
RSTT(0x0, 0x1, a, 0x0, 0x2, 0x4, 0x6, 0x9, 0xB, 0xD, 0xF);
|
|
|
|
RSTT(0x2, 0x3, a, 0x2, 0x4, 0x6, 0x8, 0xB, 0xD, 0xF, 0x1);
|
|
|
|
RSTT(0x4, 0x5, a, 0x4, 0x6, 0x8, 0xA, 0xD, 0xF, 0x1, 0x3);
|
|
|
|
RSTT(0x6, 0x7, a, 0x6, 0x8, 0xA, 0xC, 0xF, 0x1, 0x3, 0x5);
|
|
|
|
RSTT(0x8, 0x9, a, 0x8, 0xA, 0xC, 0xE, 0x1, 0x3, 0x5, 0x7);
|
|
|
|
RSTT(0xA, 0xB, a, 0xA, 0xC, 0xE, 0x0, 0x3, 0x5, 0x7, 0x9);
|
|
|
|
RSTT(0xC, 0xD, a, 0xC, 0xE, 0x0, 0x2, 0x5, 0x7, 0x9, 0xB);
|
|
|
|
RSTT(0xE, 0xF, a, 0xE, 0x0, 0x2, 0x4, 0x7, 0x9, 0xB, 0xD);
|
|
|
|
|
|
|
|
#pragma unroll 16
|
|
|
|
for (int k = 0; k<16; k++)
|
|
|
|
a[k] = t[k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__device__ __forceinline__
|
|
|
|
void groestl256_perm_Q(uint32_t thread, uint32_t *a, char *mixtabs)
|
|
|
|
{
|
|
|
|
#pragma unroll
|
|
|
|
for (int r = 0; r<10; r++)
|
|
|
|
{
|
|
|
|
uint32_t t[16];
|
|
|
|
|
|
|
|
a[0x0] ^= QC32up(0x00, r);
|
|
|
|
a[0x1] ^= QC32dn(0x00, r);
|
|
|
|
a[0x2] ^= QC32up(0x10, r);
|
|
|
|
a[0x3] ^= QC32dn(0x10, r);
|
|
|
|
a[0x4] ^= QC32up(0x20, r);
|
|
|
|
a[0x5] ^= QC32dn(0x20, r);
|
|
|
|
a[0x6] ^= QC32up(0x30, r);
|
|
|
|
a[0x7] ^= QC32dn(0x30, r);
|
|
|
|
a[0x8] ^= QC32up(0x40, r);
|
|
|
|
a[0x9] ^= QC32dn(0x40, r);
|
|
|
|
a[0xA] ^= QC32up(0x50, r);
|
|
|
|
a[0xB] ^= QC32dn(0x50, r);
|
|
|
|
a[0xC] ^= QC32up(0x60, r);
|
|
|
|
a[0xD] ^= QC32dn(0x60, r);
|
|
|
|
a[0xE] ^= QC32up(0x70, r);
|
|
|
|
a[0xF] ^= QC32dn(0x70, r);
|
|
|
|
RSTT(0x0, 0x1, a, 0x2, 0x6, 0xA, 0xE, 0x1, 0x5, 0x9, 0xD);
|
|
|
|
RSTT(0x2, 0x3, a, 0x4, 0x8, 0xC, 0x0, 0x3, 0x7, 0xB, 0xF);
|
|
|
|
RSTT(0x4, 0x5, a, 0x6, 0xA, 0xE, 0x2, 0x5, 0x9, 0xD, 0x1);
|
|
|
|
RSTT(0x6, 0x7, a, 0x8, 0xC, 0x0, 0x4, 0x7, 0xB, 0xF, 0x3);
|
|
|
|
RSTT(0x8, 0x9, a, 0xA, 0xE, 0x2, 0x6, 0x9, 0xD, 0x1, 0x5);
|
|
|
|
RSTT(0xA, 0xB, a, 0xC, 0x0, 0x4, 0x8, 0xB, 0xF, 0x3, 0x7);
|
|
|
|
RSTT(0xC, 0xD, a, 0xE, 0x2, 0x6, 0xA, 0xD, 0x1, 0x5, 0x9);
|
|
|
|
RSTT(0xE, 0xF, a, 0x0, 0x4, 0x8, 0xC, 0xF, 0x3, 0x7, 0xB);
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k = 0; k<16; k++)
|
|
|
|
a[k] = t[k];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__global__ __launch_bounds__(256,1)
|
|
|
|
void groestl256_gpu_hash32(uint32_t threads, uint32_t startNounce, uint64_t *outputHash, uint32_t *nonceVector)
|
|
|
|
{
|
|
|
|
#if USE_SHARED
|
|
|
|
extern __shared__ char mixtabs[];
|
|
|
|
|
|
|
|
if (threadIdx.x < 256) {
|
|
|
|
*((uint32_t*)mixtabs + (threadIdx.x)) = tex1Dfetch(t0up2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (256 + threadIdx.x)) = tex1Dfetch(t0dn2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (512 + threadIdx.x)) = tex1Dfetch(t1up2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (768 + threadIdx.x)) = tex1Dfetch(t1dn2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (1024 + threadIdx.x)) = tex1Dfetch(t2up2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (1280 + threadIdx.x)) = tex1Dfetch(t2dn2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (1536 + threadIdx.x)) = tex1Dfetch(t3up2, threadIdx.x);
|
|
|
|
*((uint32_t*)mixtabs + (1792 + threadIdx.x)) = tex1Dfetch(t3dn2, threadIdx.x);
|
|
|
|
}
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
#endif
|
|
|
|
|
|
|
|
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
|
|
|
|
if (thread < threads)
|
|
|
|
{
|
|
|
|
// GROESTL
|
|
|
|
uint32_t message[16];
|
|
|
|
uint32_t state[16];
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k = 0; k<4; k++)
|
|
|
|
LOHI(message[2*k], message[2*k+1], outputHash[k*threads+thread]);
|
|
|
|
|
|
|
|
#pragma unroll
|
|
|
|
for (int k = 9; k<15; k++)
|
|
|
|
message[k] = 0;
|
|
|
|
|
|
|
|
message[8] = 0x80;
|
|
|
|
message[15] = 0x01000000;
|
|
|
|
|
|
|
|
#pragma unroll 16
|
|
|
|
for (int u = 0; u<16; u++)
|
|
|
|
state[u] = message[u];
|
|
|
|
|
|
|
|
state[15] ^= 0x10000;
|
|
|
|
|
|
|
|
// Perm
|
|
|
|
|
|
|
|
#if USE_SHARED
|
|
|
|
groestl256_perm_P(thread, state, mixtabs);
|
|
|
|
state[15] ^= 0x10000;
|
|
|
|
groestl256_perm_Q(thread, message, mixtabs);
|
|
|
|
#else
|
|
|
|
groestl256_perm_P(thread, state, NULL);
|
|
|
|
state[15] ^= 0x10000;
|
|
|
|
groestl256_perm_P(thread, message, NULL);
|
|
|
|
#endif
|
|
|
|
#pragma unroll 16
|
|
|
|
for (int u = 0; u<16; u++) state[u] ^= message[u];
|
|
|
|
#pragma unroll 16
|
|
|
|
for (int u = 0; u<16; u++) message[u] = state[u];
|
|
|
|
#if USE_SHARED
|
|
|
|
groestl256_perm_P(thread, message, mixtabs);
|
|
|
|
#else
|
|
|
|
groestl256_perm_P(thread, message, NULL);
|
|
|
|
#endif
|
|
|
|
state[14] ^= message[14];
|
|
|
|
state[15] ^= message[15];
|
|
|
|
|
|
|
|
uint32_t nonce = startNounce + thread;
|
|
|
|
if (state[15] <= pTarget[7]) {
|
|
|
|
nonceVector[0] = nonce;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#define texDef(texname, texmem, texsource, texsize) \
|
|
|
|
unsigned int *texmem; \
|
|
|
|
cudaMalloc(&texmem, texsize); \
|
|
|
|
cudaMemcpy(texmem, texsource, texsize, cudaMemcpyHostToDevice); \
|
|
|
|
texname.normalized = 0; \
|
|
|
|
texname.filterMode = cudaFilterModePoint; \
|
|
|
|
texname.addressMode[0] = cudaAddressModeClamp; \
|
|
|
|
{ cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned int>(); \
|
|
|
|
cudaBindTexture(NULL, &texname, texmem, &channelDesc, texsize ); } \
|
|
|
|
|
|
|
|
__host__
|
|
|
|
void groestl256_cpu_init(int thr_id, uint32_t threads)
|
|
|
|
{
|
|
|
|
|
|
|
|
// Texturen mit obigem Makro initialisieren
|
|
|
|
texDef(t0up2, d_T0up, T0up_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t0dn2, d_T0dn, T0dn_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t1up2, d_T1up, T1up_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t1dn2, d_T1dn, T1dn_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t2up2, d_T2up, T2up_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t2dn2, d_T2dn, T2dn_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t3up2, d_T3up, T3up_cpu, sizeof(uint32_t) * 256);
|
|
|
|
texDef(t3dn2, d_T3dn, T3dn_cpu, sizeof(uint32_t) * 256);
|
|
|
|
|
|
|
|
cudaMalloc(&d_GNonce[thr_id], sizeof(uint32_t));
|
|
|
|
cudaMallocHost(&d_gnounce[thr_id], 1*sizeof(uint32_t));
|
|
|
|
}
|
|
|
|
|
|
|
|
__host__
|
|
|
|
uint32_t groestl256_cpu_hash_32(int thr_id, uint32_t threads, uint32_t startNounce, uint64_t *d_outputHash, int order)
|
|
|
|
{
|
|
|
|
uint32_t result = 0xffffffff;
|
|
|
|
cudaMemset(d_GNonce[thr_id], 0xff, sizeof(uint32_t));
|
|
|
|
const uint32_t threadsperblock = 256;
|
|
|
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen
|
|
|
|
dim3 grid((threads + threadsperblock-1)/threadsperblock);
|
|
|
|
dim3 block(threadsperblock);
|
|
|
|
|
|
|
|
#if USE_SHARED
|
|
|
|
size_t shared_size = 8 * 256 * sizeof(uint32_t);
|
|
|
|
#else
|
|
|
|
size_t shared_size = 0;
|
|
|
|
#endif
|
|
|
|
groestl256_gpu_hash32<<<grid, block, shared_size>>>(threads, startNounce, d_outputHash, d_GNonce[thr_id]);
|
|
|
|
|
|
|
|
MyStreamSynchronize(NULL, order, thr_id);
|
|
|
|
cudaMemcpy(d_gnounce[thr_id], d_GNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
cudaThreadSynchronize();
|
|
|
|
result = *d_gnounce[thr_id];
|
|
|
|
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
__host__
|
|
|
|
void groestl256_setTarget(const void *pTargetIn)
|
|
|
|
{
|
|
|
|
cudaMemcpyToSymbol(pTarget, pTargetIn, 8 * sizeof(uint32_t), 0, cudaMemcpyHostToDevice);
|
|
|
|
}
|