600 lines
17 KiB
Plaintext
Raw Normal View History

/**
* Blake-256 Cuda Kernel (Tested on SM 5/5.2)
*
* Tanguy Pruvot / SP - Jan 2016
*/
#include <stdint.h>
#include <memory.h>
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
}
/* threads per block */
#define TPB 512
/* hash by cpu with blake 256 */
extern "C" void blake256hash(void *output, const void *input, int8_t rounds = 14)
{
2014-11-03 19:40:25 +01:00
uchar hash[64];
sph_blake256_context ctx;
sph_blake256_set_rounds(rounds);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
2014-11-03 19:40:25 +01:00
memcpy(output, hash, 32);
}
#include "cuda_helper.h"
2016-02-18 09:19:25 +01:00
#ifdef __INTELLISENSE__
#define __byte_perm(x, y, b) x
#endif
2014-11-03 19:40:25 +01:00
__constant__ uint32_t _ALIGN(32) d_data[12];
2014-12-01 05:58:01 +01:00
/* 8 adapters max */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
2014-09-11 18:15:33 +02:00
2014-11-03 19:40:25 +01:00
/* max count of found nonces in one call */
2014-09-11 18:15:33 +02:00
#define NBN 2
static __thread uint32_t extra_results[NBN] = { UINT32_MAX };
#define GSPREC(a,b,c,d,x,y) { \
v[a] += (m[x] ^ c_u256[y]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
v[a] += (m[y] ^ c_u256[x]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
__device__ __forceinline__
2016-01-31 17:07:11 +01:00
void blake256_compress_14(uint32_t *h, const uint32_t *block, const uint32_t T0)
{
2014-11-03 19:40:25 +01:00
uint32_t /*_ALIGN(8)*/ m[16];
uint32_t v[16];
m[0] = block[0];
m[1] = block[1];
m[2] = block[2];
m[3] = block[3];
const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
2016-01-31 17:07:11 +01:00
const uint32_t c_Padding[12] = {
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
#pragma unroll
2016-01-31 17:07:11 +01:00
for (uint32_t i = 0; i < 12; i++) {
m[i+4] = c_Padding[i];
}
2014-09-03 09:29:51 +02:00
//#pragma unroll 8
2014-09-05 21:12:38 +02:00
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
v[ 8] = c_u256[0];
v[ 9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
GSPREC(0, 4, 0x8, 0xC,0,1);
GSPREC(1, 5, 0x9, 0xD,2,3);
GSPREC(2, 6, 0xA, 0xE, 4,5);
GSPREC(3, 7, 0xB, 0xF, 6,7);
GSPREC(0, 5, 0xA, 0xF, 8,9);
GSPREC(1, 6, 0xB, 0xC, 10,11);
GSPREC(2, 7, 0x8, 0xD, 12,13);
GSPREC(3, 4, 0x9, 0xE, 14,15);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
GSPREC(0, 4, 0x8, 0xC, 9, 0);
GSPREC(1, 5, 0x9, 0xD, 5, 7);
GSPREC(2, 6, 0xA, 0xE, 2, 4);
GSPREC(3, 7, 0xB, 0xF, 10, 15);
GSPREC(0, 5, 0xA, 0xF, 14, 1);
GSPREC(1, 6, 0xB, 0xC, 11, 12);
GSPREC(2, 7, 0x8, 0xD, 6, 8);
GSPREC(3, 4, 0x9, 0xE, 3, 13);
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
GSPREC(0, 4, 0x8, 0xC, 2, 12);
GSPREC(1, 5, 0x9, 0xD, 6, 10);
GSPREC(2, 6, 0xA, 0xE, 0, 11);
GSPREC(3, 7, 0xB, 0xF, 8, 3);
GSPREC(0, 5, 0xA, 0xF, 4, 13);
GSPREC(1, 6, 0xB, 0xC, 7, 5);
GSPREC(2, 7, 0x8, 0xD, 15, 14);
GSPREC(3, 4, 0x9, 0xE, 1, 9);
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
GSPREC(0, 4, 0x8, 0xC, 12, 5);
GSPREC(1, 5, 0x9, 0xD, 1, 15);
GSPREC(2, 6, 0xA, 0xE, 14, 13);
GSPREC(3, 7, 0xB, 0xF, 4, 10);
GSPREC(0, 5, 0xA, 0xF, 0, 7);
GSPREC(1, 6, 0xB, 0xC, 6, 3);
GSPREC(2, 7, 0x8, 0xD, 9, 2);
GSPREC(3, 4, 0x9, 0xE, 8, 11);
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
GSPREC(0, 4, 0x8, 0xC, 13, 11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
GSPREC(3, 4, 0x9, 0xE, 2, 10);
// { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
GSPREC(0, 4, 0x8, 0xC, 6, 15);
GSPREC(1, 5, 0x9, 0xD, 14, 9);
GSPREC(2, 6, 0xA, 0xE, 11, 3);
GSPREC(3, 7, 0xB, 0xF, 0, 8);
GSPREC(0, 5, 0xA, 0xF, 12, 2);
GSPREC(1, 6, 0xB, 0xC, 13, 7);
GSPREC(2, 7, 0x8, 0xD, 1, 4);
GSPREC(3, 4, 0x9, 0xE, 10, 5);
// { 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 },
GSPREC(0, 4, 0x8, 0xC, 10, 2);
GSPREC(1, 5, 0x9, 0xD, 8, 4);
GSPREC(2, 6, 0xA, 0xE, 7, 6);
GSPREC(3, 7, 0xB, 0xF, 1, 5);
GSPREC(0, 5, 0xA, 0xF, 15, 11);
GSPREC(1, 6, 0xB, 0xC, 9, 14);
GSPREC(2, 7, 0x8, 0xD, 3, 12);
GSPREC(3, 4, 0x9, 0xE, 13, 0);
// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// only compute h6 & 7
h[6U] ^= v[6U] ^ v[14U];
h[7U] ^= v[7U] ^ v[15U];
}
/* ############################################################################################################################### */
/* Precalculated 1st 64-bytes block (midstate) method */
__global__ __launch_bounds__(1024,1)
2016-01-31 17:07:11 +01:00
void blake256_gpu_hash_16(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
2014-09-03 09:29:51 +02:00
if (thread < threads)
{
2014-11-03 19:40:25 +01:00
const uint32_t nonce = startNonce + thread;
uint32_t _ALIGN(16) h[8];
#pragma unroll
for(int i=0; i < 8; i++) {
h[i] = d_data[i];
}
// ------ Close: Bytes 64 to 80 ------
uint32_t _ALIGN(16) ending[4];
ending[0] = d_data[8];
ending[1] = d_data[9];
ending[2] = d_data[10];
2014-11-03 19:40:25 +01:00
ending[3] = nonce; /* our tested value */
2016-01-31 17:07:11 +01:00
blake256_compress_14(h, ending, 640);
if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) {
2014-09-11 18:15:33 +02:00
#if NBN == 2
if (resNonce[0] != UINT32_MAX)
resNonce[1] = nonce;
else
resNonce[0] = nonce;
2014-09-11 18:15:33 +02:00
#else
resNonce[0] = nonce;
#endif
}
}
}
__global__
2016-01-31 17:07:11 +01:00
#if __CUDA_ARCH__ >= 500
__launch_bounds__(512, 3) /* 40 regs */
#endif
void blake256_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
2016-01-31 17:07:11 +01:00
uint32_t h[8];
2014-11-03 19:40:25 +01:00
const uint32_t nonce = startNonce + thread;
#pragma unroll
for (int i = 0; i < 8; i++) {
2014-11-03 19:40:25 +01:00
h[i] = d_data[i];
}
// ------ Close: Bytes 64 to 80 ------
2016-01-31 17:07:11 +01:00
uint32_t m[16] = {
d_data[8], d_data[9], d_data[10], nonce,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640,
};
const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
2016-01-31 17:07:11 +01:00
uint32_t v[16];
#pragma unroll
for (uint32_t i = 0; i < 8; i++)
v[i] = h[i];
2016-01-31 17:07:11 +01:00
v[8] = c_u256[0];
v[9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
2016-01-31 17:07:11 +01:00
v[12] = c_u256[4] ^ 640U;
v[13] = c_u256[5] ^ 640U;
v[14] = c_u256[6];
v[15] = c_u256[7];
// { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 },
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// { 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// { 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// { 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// { 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
GSPREC(0, 4, 0x8, 0xC, 9, 0);
GSPREC(1, 5, 0x9, 0xD, 5, 7);
GSPREC(2, 6, 0xA, 0xE, 2, 4);
GSPREC(3, 7, 0xB, 0xF, 10, 15);
GSPREC(0, 5, 0xA, 0xF, 14, 1);
GSPREC(1, 6, 0xB, 0xC, 11, 12);
GSPREC(2, 7, 0x8, 0xD, 6, 8);
GSPREC(3, 4, 0x9, 0xE, 3, 13);
// { 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },
GSPREC(0, 4, 0x8, 0xC, 2, 12);
GSPREC(1, 5, 0x9, 0xD, 6, 10);
GSPREC(2, 6, 0xA, 0xE, 0, 11);
GSPREC(3, 7, 0xB, 0xF, 8, 3);
GSPREC(0, 5, 0xA, 0xF, 4, 13);
GSPREC(1, 6, 0xB, 0xC, 7, 5);
GSPREC(2, 7, 0x8, 0xD, 15, 14);
GSPREC(3, 4, 0x9, 0xE, 1, 9);
// { 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
GSPREC(0, 4, 0x8, 0xC, 12, 5);
GSPREC(1, 5, 0x9, 0xD, 1, 15);
GSPREC(2, 6, 0xA, 0xE, 14, 13);
GSPREC(3, 7, 0xB, 0xF, 4, 10);
GSPREC(0, 5, 0xA, 0xF, 0, 7);
GSPREC(1, 6, 0xB, 0xC, 6, 3);
GSPREC(2, 7, 0x8, 0xD, 9, 2);
GSPREC(3, 4, 0x9, 0xE, 8, 11);
// { 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 },
GSPREC(0, 4, 0x8, 0xC, 13, 11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
//GSPREC(3, 4, 0x9, 0xE, 2, 10);
// { 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 },
// only compute h6 & 7
//h[6] ^= v[6] ^ v[14];
//h[7] ^= v[7] ^ v[15];
2014-12-01 05:58:01 +01:00
if ((h[7]^v[7]^v[15]) == 0) // h7
{
GSPREC(3, 4, 0x9, 0xE, 2, 10);
if (cuda_swab32(h[6]^v[6]^v[14]) <= highTarget) {
#if NBN == 2
if (resNonce[0] != UINT32_MAX)
resNonce[1] = nonce;
else
resNonce[0] = nonce;
#else
resNonce[0] = nonce;
#endif
}
}
}
}
__host__
static uint32_t blake256_cpu_hash_16(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget,
const int8_t rounds)
{
uint32_t result = UINT32_MAX;
dim3 grid((threads + TPB-1)/TPB);
dim3 block(TPB);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
if (rounds == 8)
2016-01-31 17:07:11 +01:00
blake256_gpu_hash_16_8 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget);
else
2016-01-31 17:07:11 +01:00
blake256_gpu_hash_16 <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget);
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
}
return result;
}
__host__
static void blake256mid(uint32_t *output, const uint32_t *input, int8_t rounds = 14)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(rounds);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 64);
2014-11-03 19:40:25 +01:00
memcpy(output, (void*)ctx.H, 32);
}
__host__
void blake256_cpu_setBlock_16(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t _ALIGN(64) data[11];
memcpy(data, midstate, 32);
data[8] = penddata[0];
data[9] = penddata[1];
data[10]= penddata[2];
2014-11-03 19:40:25 +01:00
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 12, 0, cudaMemcpyHostToDevice));
}
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_blake256(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, int8_t blakerounds=14)
{
uint32_t _ALIGN(64) endiandata[20];
uint32_t _ALIGN(64) midstate[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 26;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
if (opt_benchmark) {
targetHigh = 0x1ULL << 32;
ptarget[6] = swab32(0xff);
}
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
2016-09-27 00:05:17 +02:00
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
2017-03-08 09:18:49 +01:00
cuda_get_arch(thr_id);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
init[thr_id] = true;
}
for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]);
blake256mid(midstate, endiandata, blakerounds);
blake256_cpu_setBlock_16(&pdata[16], midstate, ptarget);
do {
// GPU HASH (second block only, first is midstate)
work->nonces[0] = blake256_cpu_hash_16(thr_id, throughput, pdata[19], targetHigh, blakerounds);
*hashes_done = pdata[19] - first_nonce + throughput;
if (work->nonces[0] != UINT32_MAX)
{
uint32_t _ALIGN(64) vhashcpu[8];
const uint32_t Htarg = ptarget[6];
for (int k=16; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], work->nonces[0]);
blake256hash(vhashcpu, endiandata, blakerounds);
2014-12-01 05:58:01 +01:00
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget))
{
work->valid_nonces = 1;
work_set_target_ratio(work, vhashcpu);
#if NBN > 1
if (extra_results[0] != UINT32_MAX) {
work->nonces[1] = extra_results[0];
be32enc(&endiandata[19], work->nonces[1]);
blake256hash(vhashcpu, endiandata, blakerounds);
2016-01-31 17:07:11 +01:00
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) {
work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[0], work->nonces[1]);
} else {
bn_set_target_ratio(work, vhashcpu, 1);
}
work->valid_nonces = 2;
}
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
extra_results[0] = UINT32_MAX;
} else {
pdata[19] = work->nonces[0] + 1; // cursor
}
#endif
return work->valid_nonces;
}
else if (vhashcpu[6] > Htarg) {
gpu_increment_reject(thr_id);
if (!opt_quiet)
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", work->nonces[0]);
pdata[19] = work->nonces[0] + 1;
continue;
}
}
pdata[19] += throughput;
2016-01-31 17:07:11 +01:00
} while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + pdata[19]);
*hashes_done = pdata[19] - first_nonce;
MyStreamSynchronize(NULL, 0, device_map[thr_id]);
return rc;
}
// cleanup
extern "C" void free_blake256(int thr_id)
{
if (!init[thr_id])
return;
cudaDeviceSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}