|
|
|
|
// Auf Groestlcoin spezialisierte Version von Groestl inkl. Bitslice
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <memory.h>
|
|
|
|
|
|
|
|
|
|
#include "cuda_helper.h"
|
|
|
|
|
#include <host_defines.h>
|
|
|
|
|
|
|
|
|
|
// aus cpu-miner.c
|
|
|
|
|
extern int device_map[8];
|
|
|
|
|
|
|
|
|
|
// aus heavy.cu
|
|
|
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
|
|
|
|
|
|
|
|
|
|
// diese Struktur wird in der Init Funktion angefordert
|
|
|
|
|
static cudaDeviceProp props[8];
|
|
|
|
|
|
|
|
|
|
// globaler Speicher f<EFBFBD>r alle HeftyHashes aller Threads
|
|
|
|
|
__constant__ uint32_t pTarget[8]; // Single GPU
|
|
|
|
|
extern uint32_t *d_resultNonce[8];
|
|
|
|
|
|
|
|
|
|
__constant__ uint32_t groestlcoin_gpu_msg[32];
|
|
|
|
|
|
|
|
|
|
// 64 Register Variante f<EFBFBD>r Compute 3.0
|
|
|
|
|
#include "groestl_functions_quad.cu"
|
|
|
|
|
#include "bitslice_transformations_quad.cu"
|
|
|
|
|
|
|
|
|
|
#define SWAB32(x) cuda_swab32(x)
|
|
|
|
|
|
|
|
|
|
__global__ __launch_bounds__(256, 4)
|
|
|
|
|
void groestlcoin_gpu_hash_quad(int threads, uint32_t startNounce, uint32_t *resNounce)
|
|
|
|
|
{
|
|
|
|
|
// durch 4 dividieren, weil jeweils 4 Threads zusammen ein Hash berechnen
|
|
|
|
|
int thread = (blockDim.x * blockIdx.x + threadIdx.x) / 4;
|
|
|
|
|
if (thread < threads)
|
|
|
|
|
{
|
|
|
|
|
// GROESTL
|
|
|
|
|
uint32_t paddedInput[8];
|
|
|
|
|
#pragma unroll 8
|
|
|
|
|
for(int k=0;k<8;k++) paddedInput[k] = groestlcoin_gpu_msg[4*k+threadIdx.x%4];
|
|
|
|
|
|
|
|
|
|
uint32_t nounce = startNounce + thread;
|
|
|
|
|
if ((threadIdx.x % 4) == 3)
|
|
|
|
|
paddedInput[4] = SWAB32(nounce); // 4*4+3 = 19
|
|
|
|
|
|
|
|
|
|
uint32_t msgBitsliced[8];
|
|
|
|
|
to_bitslice_quad(paddedInput, msgBitsliced);
|
|
|
|
|
|
|
|
|
|
uint32_t state[8];
|
|
|
|
|
for (int round=0; round<2; round++)
|
|
|
|
|
{
|
|
|
|
|
groestl512_progressMessage_quad(state, msgBitsliced);
|
|
|
|
|
|
|
|
|
|
if (round < 1)
|
|
|
|
|
{
|
|
|
|
|
// Verkettung zweier Runden inclusive Padding.
|
|
|
|
|
msgBitsliced[ 0] = __byte_perm(state[ 0], 0x00800100, 0x4341 + ((threadIdx.x%4)==3)*0x2000);
|
|
|
|
|
msgBitsliced[ 1] = __byte_perm(state[ 1], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 2] = __byte_perm(state[ 2], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 3] = __byte_perm(state[ 3], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 4] = __byte_perm(state[ 4], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 5] = __byte_perm(state[ 5], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 6] = __byte_perm(state[ 6], 0x00800100, 0x4341);
|
|
|
|
|
msgBitsliced[ 7] = __byte_perm(state[ 7], 0x00800100, 0x4341 + ((threadIdx.x%4)==0)*0x0010);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Nur der erste von jeweils 4 Threads bekommt das Ergebns-Hash
|
|
|
|
|
uint32_t out_state[16];
|
|
|
|
|
from_bitslice_quad(state, out_state);
|
|
|
|
|
|
|
|
|
|
if (threadIdx.x % 4 == 0)
|
|
|
|
|
{
|
|
|
|
|
int i, position = -1;
|
|
|
|
|
bool rc = true;
|
|
|
|
|
|
|
|
|
|
#pragma unroll 8
|
|
|
|
|
for (i = 7; i >= 0; i--) {
|
|
|
|
|
if (out_state[i] > pTarget[i]) {
|
|
|
|
|
if(position < i) {
|
|
|
|
|
position = i;
|
|
|
|
|
rc = false;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
if (out_state[i] < pTarget[i]) {
|
|
|
|
|
if(position < i) {
|
|
|
|
|
position = i;
|
|
|
|
|
rc = true;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if(rc == true)
|
|
|
|
|
if(resNounce[0] > nounce)
|
|
|
|
|
resNounce[0] = nounce;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Setup-Funktionen
|
|
|
|
|
__host__ void groestlcoin_cpu_init(int thr_id, int threads)
|
|
|
|
|
{
|
|
|
|
|
cudaSetDevice(device_map[thr_id]);
|
|
|
|
|
|
|
|
|
|
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]);
|
|
|
|
|
|
|
|
|
|
// Speicher f<EFBFBD>r Gewinner-Nonce belegen
|
|
|
|
|
cudaMalloc(&d_resultNonce[thr_id], sizeof(uint32_t));
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ void groestlcoin_cpu_setBlock(int thr_id, void *data, void *pTargetIn)
|
|
|
|
|
{
|
|
|
|
|
// Nachricht expandieren und setzen
|
|
|
|
|
uint32_t msgBlock[32];
|
|
|
|
|
|
|
|
|
|
memset(msgBlock, 0, sizeof(uint32_t) * 32);
|
|
|
|
|
memcpy(&msgBlock[0], data, 80);
|
|
|
|
|
|
|
|
|
|
// Erweitere die Nachricht auf den Nachrichtenblock (padding)
|
|
|
|
|
// Unsere Nachricht hat 80 Byte
|
|
|
|
|
msgBlock[20] = 0x80;
|
|
|
|
|
msgBlock[31] = 0x01000000;
|
|
|
|
|
|
|
|
|
|
// groestl512 braucht hierf<EFBFBD>r keinen CPU-Code (die einzige Runde wird
|
|
|
|
|
// auf der GPU ausgef<EFBFBD>hrt)
|
|
|
|
|
|
|
|
|
|
// Blockheader setzen (korrekte Nonce und Hefty Hash fehlen da drin noch)
|
|
|
|
|
cudaMemcpyToSymbol( groestlcoin_gpu_msg,
|
|
|
|
|
msgBlock,
|
|
|
|
|
128);
|
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
|
|
|
cudaMemcpyToSymbol( pTarget,
|
|
|
|
|
pTargetIn,
|
|
|
|
|
sizeof(uint32_t) * 8 );
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ void groestlcoin_cpu_hash(int thr_id, int threads, uint32_t startNounce, void *outputHashes, uint32_t *nounce)
|
|
|
|
|
{
|
|
|
|
|
int threadsperblock = 256;
|
|
|
|
|
|
|
|
|
|
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
|
|
|
|
|
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
|
|
|
|
|
int factor = 4;
|
|
|
|
|
|
|
|
|
|
// berechne wie viele Thread Blocks wir brauchen
|
|
|
|
|
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
|
|
|
|
|
dim3 block(threadsperblock);
|
|
|
|
|
|
|
|
|
|
// Gr<EFBFBD><EFBFBD>e des dynamischen Shared Memory Bereichs
|
|
|
|
|
size_t shared_size = 0;
|
|
|
|
|
|
|
|
|
|
cudaMemset(d_resultNonce[thr_id], 0xFF, sizeof(uint32_t));
|
|
|
|
|
groestlcoin_gpu_hash_quad<<<grid, block, shared_size>>>(threads, startNounce, d_resultNonce[thr_id]);
|
|
|
|
|
|
|
|
|
|
// Strategisches Sleep Kommando zur Senkung der CPU Last
|
|
|
|
|
MyStreamSynchronize(NULL, 0, thr_id);
|
|
|
|
|
|
|
|
|
|
cudaMemcpy(nounce, d_resultNonce[thr_id], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
|
}
|