ccminer-gostd-lite/qubit/qubit_luffa512.cu

523 lines
12 KiB
Plaintext
Raw Normal View History

/*
* luffa_for_32.c
* Version 2.0 (Sep 15th 2009)
*
* Copyright (C) 2008-2009 Hitachi, Ltd. All rights reserved.
*
* Hitachi, Ltd. is the owner of this software and hereby grant
* the U.S. Government and any interested party the right to use
* this software for the purposes of the SHA-3 evaluation process,
* notwithstanding that this software is copyrighted.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <memory.h>
#include "cuda_helper.h"
#ifndef UINT32_MAX
#define UINT32_MAX UINT_MAX
#endif
typedef unsigned char BitSequence;
__constant__ uint64_t c_PaddedMessage80[16]; // padded message (80 bytes + padding)
__constant__ uint32_t c_Target[8];
static uint32_t *h_resNounce[8];
static uint32_t *d_resNounce[8];
#define NBN 1 /* max results, could be 2, see blake32.cu */
#if NBN > 1
static uint32_t extra_results[2] = { UINT32_MAX, UINT32_MAX };
#endif
typedef struct {
uint32_t buffer[8]; /* Buffer to be hashed */
uint32_t chainv[40]; /* Chaining values */
} hashState;
#define BYTES_SWAP32(x) cuda_swab32(x)
#define MULT2(a,j)\
tmp = a[7+(8*j)];\
a[7+(8*j)] = a[6+(8*j)];\
a[6+(8*j)] = a[5+(8*j)];\
a[5+(8*j)] = a[4+(8*j)];\
a[4+(8*j)] = a[3+(8*j)] ^ tmp;\
a[3+(8*j)] = a[2+(8*j)] ^ tmp;\
a[2+(8*j)] = a[1+(8*j)];\
a[1+(8*j)] = a[0+(8*j)] ^ tmp;\
a[0+(8*j)] = tmp;
#define TWEAK(a0,a1,a2,a3,j)\
a0 = (a0<<(j))|(a0>>(32-j));\
a1 = (a1<<(j))|(a1>>(32-j));\
a2 = (a2<<(j))|(a2>>(32-j));\
a3 = (a3<<(j))|(a3>>(32-j));
#define STEP(c0,c1)\
SUBCRUMB(chainv[0],chainv[1],chainv[2],chainv[3],tmp);\
SUBCRUMB(chainv[5],chainv[6],chainv[7],chainv[4],tmp);\
MIXWORD(chainv[0],chainv[4]);\
MIXWORD(chainv[1],chainv[5]);\
MIXWORD(chainv[2],chainv[6]);\
MIXWORD(chainv[3],chainv[7]);\
ADD_CONSTANT(chainv[0],chainv[4],c0,c1);
#define SUBCRUMB(a0,a1,a2,a3,a4)\
a4 = a0;\
a0 |= a1;\
a2 ^= a3;\
a1 = ~a1;\
a0 ^= a3;\
a3 &= a4;\
a1 ^= a3;\
a3 ^= a2;\
a2 &= a0;\
a0 = ~a0;\
a2 ^= a1;\
a1 |= a3;\
a4 ^= a1;\
a3 ^= a2;\
a2 &= a1;\
a1 ^= a0;\
a0 = a4;
#define MIXWORD(a0,a4)\
a4 ^= a0;\
a0 = (a0<<2) | (a0>>(30));\
a0 ^= a4;\
a4 = (a4<<14) | (a4>>(18));\
a4 ^= a0;\
a0 = (a0<<10) | (a0>>(22));\
a0 ^= a4;\
a4 = (a4<<1) | (a4>>(31));
#define ADD_CONSTANT(a0,b0,c0,c1)\
a0 ^= c0;\
b0 ^= c1;
/* initial values of chaining variables */
__constant__ uint32_t c_IV[40];
const uint32_t h2_IV[40] = {
0x6d251e69,0x44b051e0,0x4eaa6fb4,0xdbf78465,
0x6e292011,0x90152df4,0xee058139,0xdef610bb,
0xc3b44b95,0xd9d2f256,0x70eee9a0,0xde099fa3,
0x5d9b0557,0x8fc944b3,0xcf1ccf0e,0x746cd581,
0xf7efc89d,0x5dba5781,0x04016ce5,0xad659c05,
0x0306194f,0x666d1836,0x24aa230a,0x8b264ae7,
0x858075d5,0x36d79cce,0xe571f7d7,0x204b1f67,
0x35870c6a,0x57e9e923,0x14bcb808,0x7cde72ce,
0x6c68e9be,0x5ec41e22,0xc825b7c7,0xaffb4363,
0xf5df3999,0x0fc688f1,0xb07224cc,0x03e86cea};
__constant__ uint32_t c_CNS[80];
uint32_t h2_CNS[80] = {
0x303994a6,0xe0337818,0xc0e65299,0x441ba90d,
0x6cc33a12,0x7f34d442,0xdc56983e,0x9389217f,
0x1e00108f,0xe5a8bce6,0x7800423d,0x5274baf4,
0x8f5b7882,0x26889ba7,0x96e1db12,0x9a226e9d,
0xb6de10ed,0x01685f3d,0x70f47aae,0x05a17cf4,
0x0707a3d4,0xbd09caca,0x1c1e8f51,0xf4272b28,
0x707a3d45,0x144ae5cc,0xaeb28562,0xfaa7ae2b,
0xbaca1589,0x2e48f1c1,0x40a46f3e,0xb923c704,
0xfc20d9d2,0xe25e72c1,0x34552e25,0xe623bb72,
0x7ad8818f,0x5c58a4a4,0x8438764a,0x1e38e2e7,
0xbb6de032,0x78e38b9d,0xedb780c8,0x27586719,
0xd9847356,0x36eda57f,0xa2c78434,0x703aace7,
0xb213afa5,0xe028c9bf,0xc84ebe95,0x44756f91,
0x4e608a22,0x7e8fce32,0x56d858fe,0x956548be,
0x343b138f,0xfe191be2,0xd0ec4e3d,0x3cb226e5,
0x2ceb4882,0x5944a28e,0xb3ad2208,0xa1c4c355,
0xf0d2e9e3,0x5090d577,0xac11d7fa,0x2d1925ab,
0x1bcb66f2,0xb46496ac,0x6f2d9bc9,0xd1925ab0,
0x78602649,0x29131ab6,0x8edae952,0x0fc053c3,
0x3b6ba548,0x3f014f0c,0xedae9520,0xfc053c31};
/***************************************************/
__device__ __forceinline__
void rnd512(hashState *state)
{
int i,j;
uint32_t t[40];
uint32_t chainv[8];
uint32_t tmp;
#pragma unroll 8
for(i=0;i<8;i++) {
t[i]=0;
#pragma unroll 5
for(j=0;j<5;j++) {
t[i] ^= state->chainv[i+8*j];
}
}
MULT2(t, 0);
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+8*j] ^= t[i];
}
}
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
t[i+8*j] = state->chainv[i+8*j];
}
}
#pragma unroll 5
for(j=0;j<5;j++) {
MULT2(state->chainv, j);
}
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[8*j+i] ^= t[8*((j+1)%5)+i];
}
}
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
t[i+8*j] = state->chainv[i+8*j];
}
}
#pragma unroll 5
for(j=0;j<5;j++) {
MULT2(state->chainv, j);
}
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[8*j+i] ^= t[8*((j+4)%5)+i];
}
}
#pragma unroll 5
for(j=0;j<5;j++) {
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+8*j] ^= state->buffer[i];
}
MULT2(state->buffer, 0);
}
#pragma unroll 8
for(i=0;i<8;i++) {
chainv[i] = state->chainv[i];
}
#pragma unroll 8
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)],c_CNS[(2*i)+1]);
}
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i] = chainv[i];
chainv[i] = state->chainv[i+8];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],1);
#pragma unroll 8
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+16],c_CNS[(2*i)+16+1]);
}
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+8] = chainv[i];
chainv[i] = state->chainv[i+16];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],2);
#pragma unroll 8
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+32],c_CNS[(2*i)+32+1]);
}
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+16] = chainv[i];
chainv[i] = state->chainv[i+24];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],3);
#pragma unroll 8
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+48],c_CNS[(2*i)+48+1]);
}
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+24] = chainv[i];
chainv[i] = state->chainv[i+32];
}
TWEAK(chainv[4],chainv[5],chainv[6],chainv[7],4);
#pragma unroll 8
for(i=0;i<8;i++) {
STEP(c_CNS[(2*i)+64],c_CNS[(2*i)+64+1]);
}
#pragma unroll 8
for(i=0;i<8;i++) {
state->chainv[i+32] = chainv[i];
}
}
__device__ __forceinline__
void Update512(hashState *state, const BitSequence *data)
{
#pragma unroll 8
for(int i=0;i<8;i++) state->buffer[i] = BYTES_SWAP32(((uint32_t*)data)[i]);
rnd512(state);
#pragma unroll 8
for(int i=0;i<8;i++) state->buffer[i] = BYTES_SWAP32(((uint32_t*)(data+32))[i]);
rnd512(state);
#pragma unroll 4
for(int i=0;i<4;i++) state->buffer[i] = BYTES_SWAP32(((uint32_t*)(data+64))[i]);
}
/***************************************************/
__device__ __forceinline__
void finalization512(hashState *state, uint32_t *b)
{
int i,j;
state->buffer[4] = 0x80000000;
#pragma unroll 3
for(int i=5;i<8;i++) state->buffer[i] = 0;
rnd512(state);
/*---- blank round with m=0 ----*/
#pragma unroll 8
for(i=0;i<8;i++) state->buffer[i] =0;
rnd512(state);
#pragma unroll 8
for(i=0;i<8;i++) {
b[i] = 0;
#pragma unroll 5
for(j=0;j<5;j++) {
b[i] ^= state->chainv[i+8*j];
}
b[i] = BYTES_SWAP32((b[i]));
}
#pragma unroll 8
for(i=0;i<8;i++) state->buffer[i]=0;
rnd512(state);
#pragma unroll 8
for(i=0;i<8;i++) {
b[8+i] = 0;
#pragma unroll 5
for(j=0;j<5;j++) {
b[8+i] ^= state->chainv[i+8*j];
}
b[8+i] = BYTES_SWAP32((b[8+i]));
}
}
/***************************************************/
// Die Hash-Funktion
__global__
void qubit_luffa512_gpu_hash_80(int threads, uint32_t startNounce, void *outputHash)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
union {
uint64_t buf64[16];
uint32_t buf32[32];
} buff;
#pragma unroll 16
for (int i=0; i < 16; ++i) buff.buf64[i] = c_PaddedMessage80[i];
// die Nounce durch die thread-spezifische ersetzen
buff.buf64[9] = REPLACE_HIWORD(buff.buf64[9], cuda_swab32(nounce));
hashState state;
#pragma unroll 40
for(int i=0;i<40;i++) state.chainv[i] = c_IV[i];
#pragma unroll 8
for(int i=0;i<8;i++) state.buffer[i] = 0;
Update512(&state, (BitSequence*)buff.buf32);
uint32_t *outHash = (uint32_t *)outputHash + 16 * thread;
finalization512(&state, (uint32_t*)outHash);
}
}
__global__
void qubit_luffa512_gpu_finalhash_80(int threads, uint32_t startNounce, void *outputHash, uint32_t *resNounce)
{
int thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t nounce = startNounce + thread;
union {
uint64_t buf64[16];
uint32_t buf32[32];
} buff;
uint32_t Hash[16];
#pragma unroll 16
for (int i=0; i < 16; ++i) buff.buf64[i] = c_PaddedMessage80[i];
// Tested nonce
buff.buf64[9] = REPLACE_HIWORD(buff.buf64[9], cuda_swab32(nounce));
hashState state;
#pragma unroll 40
for(int i=0;i<40;i++) state.chainv[i] = c_IV[i];
#pragma unroll 8
for(int i=0;i<8;i++) state.buffer[i] = 0;
Update512(&state, (BitSequence*)buff.buf32);
finalization512(&state, Hash);
/* dont ask me why not a simple if (Hash[i] > c_Target[i]) return;
* we lose 20% in perfs without the position test */
int position = -1;
#pragma unroll 8
for (int i = 7; i >= 0; i--) {
if (Hash[i] > c_Target[i]) {
if (position < i) {
return;
}
}
if (Hash[i] < c_Target[i]) {
if (position < i) {
position = i;
//break; /* impact perfs, unroll ? */
}
}
}
#if NBN == 1
if (resNounce[0] > nounce) {
resNounce[0] = nounce;
}
#else
/* keep the smallest nounce, + extra one if found */
if (resNounce[0] > nounce) {
resNounce[1] = resNounce[0];
resNounce[0] = nounce;
} else {
resNounce[1] = nounce;
}
#endif
}
}
__host__
void qubit_luffa512_cpu_init(int thr_id, int threads)
{
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_IV, h2_IV, sizeof(h2_IV), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_CNS, h2_CNS, sizeof(h2_CNS), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMalloc(&d_resNounce[thr_id], NBN * sizeof(uint32_t)));
CUDA_SAFE_CALL(cudaMallocHost(&h_resNounce[thr_id], NBN * sizeof(uint32_t)));
}
__host__
uint32_t qubit_luffa512_cpu_finalhash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash,int order)
{
uint32_t result = UINT32_MAX;
cudaMemset(d_resNounce[thr_id], 0xff, NBN * sizeof(uint32_t));
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
qubit_luffa512_gpu_finalhash_80 <<<grid, block, shared_size>>> (threads, startNounce, d_outputHash, d_resNounce[thr_id]);
cudaDeviceSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNounce[thr_id], d_resNounce[thr_id], NBN * sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
//cudaThreadSynchronize();
result = h_resNounce[thr_id][0];
#if NBN > 1
extra_results[0] = h_resNounce[thr_id][1];
#endif
}
return result;
}
__host__
void qubit_luffa512_cpu_hash_80(int thr_id, int threads, uint32_t startNounce, uint32_t *d_outputHash,int order)
{
const int threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
size_t shared_size = 0;
qubit_luffa512_gpu_hash_80 <<<grid, block, shared_size>>> (threads, startNounce, d_outputHash);
MyStreamSynchronize(NULL, order, thr_id);
}
__host__
void qubit_luffa512_cpu_setBlock_80(void *pdata)
{
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 48);
PaddedMessage[80] = 0x80;
PaddedMessage[111] = 1;
PaddedMessage[126] = 0x02;
PaddedMessage[127] = 0x80;
CUDA_SAFE_CALL(cudaMemcpyToSymbol( c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
}
__host__
void qubit_luffa512_cpufinal_setBlock_80(void *pdata, const void *ptarget)
{
unsigned char PaddedMessage[128];
memcpy(PaddedMessage, pdata, 80);
memset(PaddedMessage+80, 0, 48);
PaddedMessage[80] = 0x80;
PaddedMessage[111] = 1;
PaddedMessage[126] = 0x02;
PaddedMessage[127] = 0x80;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_Target, ptarget, 8*sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_PaddedMessage80, PaddedMessage, 16*sizeof(uint64_t), 0, cudaMemcpyHostToDevice));
}