GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
8.0 KiB

#include <stdio.h>
#include <stdint.h>
#include <string.h>
#ifndef _WIN32
#include <unistd.h>
#endif
#include <miner.h>
#include <cuda_helper.h>
#include "cryptonight.h"
typedef uint8_t BitSequence;
typedef uint64_t DataLength;
static uint32_t *d_input[MAX_GPUS] = { 0 };
static uint32_t *d_target[MAX_GPUS];
static uint32_t *d_result[MAX_GPUS];
#include "cn_keccak.cuh"
#include "cn_blake.cuh"
#include "cn_groestl.cuh"
#include "cn_jh.cuh"
#include "cn_skein.cuh"
__constant__ uint8_t d_sub_byte[16][16] = {
{0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76},
{0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0},
{0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15},
{0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75},
{0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84},
{0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf},
{0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8},
{0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2},
{0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73},
{0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb},
{0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79},
{0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08},
{0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a},
{0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e},
{0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf},
{0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16}
};
__device__ __forceinline__
void cryptonight_aes_set_key(uint32_t * __restrict__ key, const uint32_t * __restrict__ data)
{
const uint32_t aes_gf[] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
MEMSET4(key, 0, 40);
MEMCPY4(key, data, 8);
#pragma unroll
for(int i = 8; i < 40; i++)
{
uint8_t temp[4];
*(uint32_t *)temp = key[i - 1];
if(i % 8 == 0) {
*(uint32_t *)temp = ROTR32(*(uint32_t *)temp, 8);
for(int j = 0; j < 4; j++)
temp[j] = d_sub_byte[(temp[j] >> 4) & 0x0f][temp[j] & 0x0f];
*(uint32_t *)temp ^= aes_gf[i / 8 - 1];
}
else if(i % 8 == 4) {
#pragma unroll
for(int j = 0; j < 4; j++)
temp[j] = d_sub_byte[(temp[j] >> 4) & 0x0f][temp[j] & 0x0f];
}
key[i] = key[(i - 8)] ^ *(uint32_t *)temp;
}
}
__global__
void cryptonight_extra_gpu_prepare(const uint32_t threads, uint32_t * __restrict__ d_input, uint32_t startNonce,
uint64_t * d_ctx_state, uint32_t * __restrict__ d_ctx_a, uint32_t * __restrict__ d_ctx_b,
uint32_t * __restrict__ d_ctx_key1, uint32_t * __restrict__ d_ctx_key2)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if(thread < threads)
{
uint32_t ctx_state[50];
uint32_t ctx_a[4];
uint32_t ctx_b[4];
uint32_t ctx_key1[40];
uint32_t ctx_key2[40];
uint32_t input[19];
MEMCPY4(input, d_input, 19);
*((uint32_t *)(((char *)input) + 39)) = startNonce + thread;
cn_keccak((uint8_t *)input, (uint8_t *)ctx_state);
cryptonight_aes_set_key(ctx_key1, ctx_state);
cryptonight_aes_set_key(ctx_key2, ctx_state + 8);
XOR_BLOCKS_DST(ctx_state, ctx_state + 8, ctx_a);
XOR_BLOCKS_DST(ctx_state + 4, ctx_state + 12, ctx_b);
MEMCPY8(&d_ctx_state[thread * 26], ctx_state, 25);
MEMCPY4(d_ctx_a + thread * 4, ctx_a, 4);
MEMCPY4(d_ctx_b + thread * 4, ctx_b, 4);
MEMCPY4(d_ctx_key1 + thread * 40, ctx_key1, 40);
MEMCPY4(d_ctx_key2 + thread * 40, ctx_key2, 40);
}
}
__global__
void cryptonight_extra_gpu_keccak(uint32_t threads, uint32_t * d_ctx_state)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if(thread < threads)
{
uint64_t* ctx_state = (uint64_t*) (&d_ctx_state[thread * 52U]);
uint64_t state[25];
#pragma unroll
for(int i = 0; i < 25; i++)
state[i] = ctx_state[i];
cn_keccakf2(state);
// to reduce the final kernel stack frame, cut algos in 2 kernels
// ps: these 2 final kernels are not important for the overall xmr hashrate (< 1%)
switch (((uint8_t*)state)[0] & 0x03)
{
case 0: {
uint32_t hash[8];
cn_blake((uint8_t*)state, 200, (uint8_t*)hash);
((uint32_t*)ctx_state)[0] = 0;
((uint32_t*)ctx_state)[6] = hash[6];
((uint32_t*)ctx_state)[7] = hash[7];
break;
}
case 1: {
uint32_t hash[8];
cn_groestl((BitSequence*)state, 200, (BitSequence*)hash);
((uint32_t*)ctx_state)[0] = 0;
((uint32_t*)ctx_state)[6] = hash[6];
((uint32_t*)ctx_state)[7] = hash[7];
break;
}
default: {
#pragma unroll
for(int i = 0; i < 25; i++)
ctx_state[i] = state[i];
}
}
}
}
__global__
void cryptonight_extra_gpu_final(uint32_t threads, const uint32_t startNonce, uint64_t * __restrict__ d_ctx_state,
const uint32_t* d_target, uint32_t * resNonces)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if(thread < threads)
{
uint64_t* const state = &d_ctx_state[thread * 26U];
uint32_t hash[8];
switch(((uint8_t *)state)[0] & 0x03)
{
case 0: {
uint32_t* h32 = (uint32_t*)state;
hash[6] = h32[6];
hash[7] = h32[7];
break;
}
case 2: {
cn_jh256((uint8_t*)state, 200, hash);
break;
}
case 3: {
cn_skein((uint8_t*)state, 200, hash);
break;
}
}
if(hash[7] <= d_target[1] && hash[6] <= d_target[0])
{
const uint32_t nonce = startNonce + thread;
uint32_t tmp = atomicExch(resNonces, nonce);
if(tmp != UINT32_MAX)
resNonces[1] = tmp;
}
}
}
__host__
void cryptonight_extra_cpu_setData(int thr_id, const void *data, const void *ptarget)
{
uint32_t *pTargetIn = (uint32_t*) ptarget;
cudaMemcpy(d_input[thr_id], data, 19 * sizeof(uint32_t), cudaMemcpyHostToDevice);
cudaMemcpy(d_target[thr_id], &pTargetIn[6], 2*sizeof(uint32_t), cudaMemcpyHostToDevice);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
}
__host__
void cryptonight_extra_cpu_init(int thr_id, uint32_t threads)
{
cudaMalloc(&d_input[thr_id], 19 * sizeof(uint32_t));
cudaMalloc(&d_target[thr_id], 2*sizeof(uint32_t));
cudaMalloc(&d_result[thr_id], 2*sizeof(uint32_t));
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
}
__host__
void cryptonight_extra_cpu_prepare(int thr_id, uint32_t threads, uint32_t startNonce, uint64_t *d_ctx_state, uint32_t *d_ctx_a, uint32_t *d_ctx_b, uint32_t *d_ctx_key1, uint32_t *d_ctx_key2)
{
uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
cryptonight_extra_gpu_prepare <<<grid, block >>> (threads, d_input[thr_id], startNonce, d_ctx_state, d_ctx_a, d_ctx_b, d_ctx_key1, d_ctx_key2);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
}
__host__
void cryptonight_extra_cpu_final(int thr_id, uint32_t threads, uint32_t startNonce, uint32_t *resnonce, uint64_t *d_ctx_state)
{
uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
cudaMemset(d_result[thr_id], 0xFF, 2*sizeof(uint32_t));
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cryptonight_extra_gpu_keccak <<<grid, block >>> (threads, (uint32_t*)d_ctx_state);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cryptonight_extra_gpu_final <<<grid, block >>> (threads, startNonce, d_ctx_state, d_target[thr_id], d_result[thr_id]);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
cudaMemcpy(resnonce, d_result[thr_id], 2 * sizeof(uint32_t), cudaMemcpyDeviceToHost);
exit_if_cudaerror(thr_id, __FUNCTION__, __LINE__);
}
__host__
void cryptonight_extra_cpu_free(int thr_id)
{
if (d_input[thr_id]) {
cudaFree(d_input[thr_id]);
cudaFree(d_target[thr_id]);
cudaFree(d_result[thr_id]);
d_input[thr_id] = NULL;
}
}