2015-04-18 08:08:23 +02:00
//
// Kernel that runs best on Fermi devices
//
// - shared memory use reduced by nearly factor 2 over legacy kernel
// by transferring only half work units (16 x uint32_t) at once.
// - uses ulong2/uint4 based memory transfers (each thread moves 16 bytes),
// allowing for shorter unrolled loops. This relies on Fermi's better
// memory controllers to get high memory troughput.
//
// NOTE: compile this .cu module for compute_20,sm_20 with --maxrregcount=63
//
// TODO: batch-size support for this kernel
//
#include <map>
2015-05-17 06:01:12 +02:00
#include <cuda_runtime.h>
2015-04-18 08:08:23 +02:00
#include "miner.h"
#include "salsa_kernel.h"
#include "fermi_kernel.h"
#define THREADS_PER_WU 1 // single thread per hash
#define TEXWIDTH 32768
// forward references
template <int ALGO> __global__ void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N);
template <int ALGO> __global__ void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N);
template <int ALGO, int TEX_DIM> __global__ void fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N);
template <int ALGO> __global__ void fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP);
template <int ALGO> __global__ void fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP);
template <int ALGO, int TEX_DIM> __global__ void fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP);
// scratchbuf constants (pointers to scratch buffer for each warp, i.e. 32 hashes)
__constant__ uint32_t* c_V[TOTAL_WARP_LIMIT];
// using texture references for the "tex" variants of the B kernels
texture<uint4, 1, cudaReadModeElementType> texRef1D_4_V;
texture<uint4, 2, cudaReadModeElementType> texRef2D_4_V;
FermiKernel::FermiKernel() : KernelInterface()
{
}
bool FermiKernel::bindtexture_1D(uint32_t *d_V, size_t size)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef1D_4_V.normalized = 0;
texRef1D_4_V.filterMode = cudaFilterModePoint;
texRef1D_4_V.addressMode[0] = cudaAddressModeClamp;
checkCudaErrors(cudaBindTexture(NULL, &texRef1D_4_V, d_V, &channelDesc4, size));
return true;
}
bool FermiKernel::bindtexture_2D(uint32_t *d_V, int width, int height, size_t pitch)
{
cudaChannelFormatDesc channelDesc4 = cudaCreateChannelDesc<uint4>();
texRef2D_4_V.normalized = 0;
texRef2D_4_V.filterMode = cudaFilterModePoint;
texRef2D_4_V.addressMode[0] = cudaAddressModeClamp;
texRef2D_4_V.addressMode[1] = cudaAddressModeClamp;
// maintain texture width of TEXWIDTH (max. limit is 65000)
while (width > TEXWIDTH) { width /= 2; height *= 2; pitch /= 2; }
while (width < TEXWIDTH) { width *= 2; height = (height+1)/2; pitch *= 2; }
// fprintf(stderr, "total size: %u, %u bytes\n", pitch * height, width * sizeof(uint32_t) * 4 * height);
// fprintf(stderr, "binding width width=%d, height=%d, pitch=%d\n", width, height,pitch);
checkCudaErrors(cudaBindTexture2D(NULL, &texRef2D_4_V, d_V, &channelDesc4, width, height, pitch));
return true;
}
bool FermiKernel::unbindtexture_1D()
{
checkCudaErrors(cudaUnbindTexture(texRef1D_4_V));
return true;
}
bool FermiKernel::unbindtexture_2D()
{
checkCudaErrors(cudaUnbindTexture(texRef2D_4_V));
return true;
}
void FermiKernel::set_scratchbuf_constants(int MAXWARPS, uint32_t** h_V)
{
checkCudaErrors(cudaMemcpyToSymbol(c_V, h_V, MAXWARPS*sizeof(uint32_t*), 0, cudaMemcpyHostToDevice));
}
bool FermiKernel::run_kernel(dim3 grid, dim3 threads, int WARPS_PER_BLOCK, int thr_id, cudaStream_t stream, uint32_t* d_idata, uint32_t* d_odata, unsigned int N, unsigned int LOOKUP_GAP, bool interactive, bool benchmark, int texture_cache)
{
bool success = true;
int shared = WARPS_PER_BLOCK * WU_PER_WARP * (16+4) * sizeof(uint32_t);
// First phase: Sequential writes to scratchpad.
if (LOOKUP_GAP == 1) {
if (IS_SCRYPT()) fermi_scrypt_core_kernelA<A_SCRYPT><<< grid, threads, shared, stream >>>(d_idata, N);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_idata, N);
} else {
if (IS_SCRYPT()) fermi_scrypt_core_kernelA_LG<A_SCRYPT><<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelA_LG<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_idata, N, LOOKUP_GAP);
}
// Second phase: Random read access from scratchpad.
if (LOOKUP_GAP == 1) {
if (texture_cache) {
if (texture_cache == 1) {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<A_SCRYPT,1><<< grid, threads, shared, stream >>>(d_odata, N);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<A_SCRYPT_JANE,1><<< grid, threads, shared, stream >>>(d_odata, N);
} else if (texture_cache == 2) {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_tex<A_SCRYPT,2><<< grid, threads, shared, stream >>>(d_odata, N);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_tex<A_SCRYPT_JANE,2><<< grid, threads, shared, stream >>>(d_odata, N);
}
else success = false;
} else {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB<A_SCRYPT><<< grid, threads, shared, stream >>>(d_odata, N);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_odata, N);
}
} else {
if (texture_cache) {
if (texture_cache == 1) {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT,1><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT_JANE,1><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
} else if (texture_cache == 2) {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT,2><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG_tex<A_SCRYPT_JANE,2><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
}
else success = false;
} else {
if (IS_SCRYPT()) fermi_scrypt_core_kernelB_LG<A_SCRYPT><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
if (IS_SCRYPT_JANE()) fermi_scrypt_core_kernelB_LG<A_SCRYPT_JANE><<< grid, threads, shared, stream >>>(d_odata, N, LOOKUP_GAP);
}
}
return success;
}
#if 0
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
#define QUARTER(a,b,c,d) \
a += b; d ^= a; d = ROTL(d,16); \
c += d; b ^= c; b = ROTL(b,12); \
a += b; d ^= a; d = ROTL(d,8); \
c += d; b ^= c; b = ROTL(b,7);
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
/* Operate on columns. */
QUARTER( x[0], x[4], x[ 8], x[12] )
QUARTER( x[1], x[5], x[ 9], x[13] )
QUARTER( x[2], x[6], x[10], x[14] )
QUARTER( x[3], x[7], x[11], x[15] )
/* Operate on diagonals */
QUARTER( x[0], x[5], x[10], x[15] )
QUARTER( x[1], x[6], x[11], x[12] )
QUARTER( x[2], x[7], x[ 8], x[13] )
QUARTER( x[3], x[4], x[ 9], x[14] )
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#else
#define ROTL(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
#define ADD4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 += s1; d2 += s2; d3 += s3; d4 += s4;
#define XOR4(d1,d2,d3,d4,s1,s2,s3,s4) \
d1 ^= s1; d2 ^= s2; d3 ^= s3; d4 ^= s4;
#define ROTL4(d1,d2,d3,d4,amt) \
d1 = ROTL(d1, amt); d2 = ROTL(d2, amt); d3 = ROTL(d3, amt); d4 = ROTL(d4, amt);
#define QROUND(a1,a2,a3,a4, b1,b2,b3,b4, c1,c2,c3,c4, amt) \
ADD4 (a1,a2,a3,a4, c1,c2,c3,c4) \
XOR4 (b1,b2,b3,b4, a1,a2,a3,a4) \
ROTL4(b1,b2,b3,b4, amt)
static __device__ void xor_chacha8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
/* Operate on columns. */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 16);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[12],x[13],x[14],x[15], x[ 4],x[ 5],x[ 6],x[ 7], 8);
QROUND(x[ 8],x[ 9],x[10],x[11], x[ 4],x[ 5],x[ 6],x[ 7], x[12],x[13],x[14],x[15], 7);
/* Operate on diagonals */
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 16);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 12);
QROUND(x[ 0],x[ 1],x[ 2],x[ 3], x[15],x[12],x[13],x[14], x[ 5],x[ 6],x[ 7],x[ 4], 8);
QROUND(x[10],x[11],x[ 8],x[ 9], x[ 5],x[ 6],x[ 7],x[ 4], x[15],x[12],x[13],x[14], 7);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
#endif
#define ROTL7(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=(((a00)<<7) | ((a00)>>25) );\
a1^=(((a10)<<7) | ((a10)>>25) );\
a2^=(((a20)<<7) | ((a20)>>25) );\
a3^=(((a30)<<7) | ((a30)>>25) );\
};\
#define ROTL9(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=(((a00)<<9) | ((a00)>>23) );\
a1^=(((a10)<<9) | ((a10)>>23) );\
a2^=(((a20)<<9) | ((a20)>>23) );\
a3^=(((a30)<<9) | ((a30)>>23) );\
};\
#define ROTL13(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=(((a00)<<13) | ((a00)>>19) );\
a1^=(((a10)<<13) | ((a10)>>19) );\
a2^=(((a20)<<13) | ((a20)>>19) );\
a3^=(((a30)<<13) | ((a30)>>19) );\
};\
#define ROTL18(a0,a1,a2,a3,a00,a10,a20,a30){\
a0^=(((a00)<<18) | ((a00)>>14) );\
a1^=(((a10)<<18) | ((a10)>>14) );\
a2^=(((a20)<<18) | ((a20)>>14) );\
a3^=(((a30)<<18) | ((a30)>>14) );\
};\
static __device__ void xor_salsa8(uint4 *B, uint4 *C)
{
uint32_t x[16];
x[0]=(B[0].x ^= C[0].x);
x[1]=(B[0].y ^= C[0].y);
x[2]=(B[0].z ^= C[0].z);
x[3]=(B[0].w ^= C[0].w);
x[4]=(B[1].x ^= C[1].x);
x[5]=(B[1].y ^= C[1].y);
x[6]=(B[1].z ^= C[1].z);
x[7]=(B[1].w ^= C[1].w);
x[8]=(B[2].x ^= C[2].x);
x[9]=(B[2].y ^= C[2].y);
x[10]=(B[2].z ^= C[2].z);
x[11]=(B[2].w ^= C[2].w);
x[12]=(B[3].x ^= C[3].x);
x[13]=(B[3].y ^= C[3].y);
x[14]=(B[3].z ^= C[3].z);
x[15]=(B[3].w ^= C[3].w);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
/* Operate on columns. */
ROTL7(x[4],x[9],x[14],x[3],x[0]+x[12],x[1]+x[5],x[6]+x[10],x[11]+x[15]);
ROTL9(x[8],x[13],x[2],x[7],x[0]+x[4],x[5]+x[9],x[10]+x[14],x[3]+x[15]);
ROTL13(x[12],x[1],x[6],x[11],x[4]+x[8],x[9]+x[13],x[2]+x[14],x[3]+x[7]);
ROTL18(x[0],x[5],x[10],x[15],x[8]+x[12],x[1]+x[13],x[2]+x[6],x[7]+x[11]);
/* Operate on rows. */
ROTL7(x[1],x[6],x[11],x[12],x[0]+x[3],x[4]+x[5],x[9]+x[10],x[14]+x[15]);
ROTL9(x[2],x[7],x[8],x[13],x[0]+x[1],x[5]+x[6],x[10]+x[11],x[12]+x[15]);
ROTL13(x[3],x[4],x[9],x[14],x[1]+x[2],x[6]+x[7],x[8]+x[11],x[12]+x[13]);
ROTL18(x[0],x[5],x[10],x[15],x[2]+x[3],x[4]+x[7],x[8]+x[9],x[13]+x[14]);
B[0].x += x[0]; B[0].y += x[1]; B[0].z += x[2]; B[0].w += x[3]; B[1].x += x[4]; B[1].y += x[5]; B[1].z += x[6]; B[1].w += x[7];
B[2].x += x[8]; B[2].y += x[9]; B[2].z += x[10]; B[2].w += x[11]; B[3].x += x[12]; B[3].y += x[13]; B[3].z += x[14]; B[3].w += x[15];
}
static __device__ __forceinline__ uint4& operator^=(uint4& left, const uint4& right)
{
left.x ^= right.x;
left.y ^= right.y;
left.z ^= right.z;
left.w ^= right.w;
return left;
}
////////////////////////////////////////////////////////////////////////////////
//! Scrypt core kernel for Fermi class devices.
//! @param g_idata input data in global memory
//! @param g_odata output data in global memory
////////////////////////////////////////////////////////////////////////////////
template <int ALGO> __global__
void fermi_scrypt_core_kernelA(uint32_t *g_idata, unsigned int N)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
const unsigned int LOOKUP_GAP = 1;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
for (int i = 1; i < N; i++) {
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu + i*32])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu + i*32 + 16])) = *((ulonglong2*)XB[wu]);
}
}
template <int ALGO> __global__
void fermi_scrypt_core_kernelB(uint32_t *g_odata, unsigned int N)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
const unsigned int LOOKUP_GAP = 1;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + (N-1)*32 + 16]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
for (int i = 0; i < N; i++) {
XX[16] = 32 * (C[0].x & (N-1));
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]);
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]);
}
template <int ALGO, int TEX_DIM> __global__ void
fermi_scrypt_core_kernelB_tex(uint32_t *g_odata, unsigned int N)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
const unsigned int LOOKUP_GAP = 1;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_odata += 32 * offset;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + (N-1)*32 + 16+Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
for (int i = 0; i < N; i++) {
XX[16] = 32 * (C[0].x & (N-1));
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] ^= *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] ^= *((uint4*)&XX[4*idx]);
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]);
}
//
// Lookup-Gap variations of the above functions
//
template <int ALGO> __global__ void
fermi_scrypt_core_kernelA_LG(uint32_t *g_idata, unsigned int N, unsigned int LOOKUP_GAP)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_idata += 32 * offset;
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+Z]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu+16])) = *((ulonglong2*)XB[wu]) = *((ulonglong2*)(&g_idata[32*(wu+Y)+16+Z]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
for (int i = 1; i < N; i++) {
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
if (i % LOOKUP_GAP == 0) {
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&V[SCRATCH*wu + (i/LOOKUP_GAP)*32 + 16])) = *((ulonglong2*)XB[wu]);
}
}
}
template <int ALGO> __global__ void
fermi_scrypt_core_kernelB_LG(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_odata += 32 * offset;
uint32_t * V = c_V[offset / WU_PER_WARP] + SCRATCH*Y + Z;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP;
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + pos*32 + 16]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
while (loop--)
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
for (int i = 0; i < N; i++) {
uint32_t j = C[0].x & (N-1);
uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP;
XX[16] = 32 * pos;
uint4 b[4], c[4];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z]]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)XB[wu]) = *((ulonglong2*)(&V[SCRATCH*wu + XB[wu][16-Z] + 16]));
#pragma unroll 4
for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]);
while (loop--)
switch(ALGO) {
case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break;
case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break;
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx];
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx];
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]);
}
template <int ALGO, int TEX_DIM> __global__ void
fermi_scrypt_core_kernelB_LG_tex(uint32_t *g_odata, unsigned int N, unsigned int LOOKUP_GAP)
{
extern __shared__ unsigned char x[];
uint32_t ((*X)[WU_PER_WARP][16+4]) = (uint32_t (*)[WU_PER_WARP][16+4]) x;
int warpIdx = threadIdx.x / warpSize;
int warpThread = threadIdx.x % warpSize;
// variables supporting the large memory transaction magic
unsigned int Y = warpThread/4;
unsigned int Z = 4*(warpThread%4);
// add block specific offsets
int WARPS_PER_BLOCK = blockDim.x / 32;
int offset = blockIdx.x * WU_PER_BLOCK + warpIdx * WU_PER_WARP;
g_odata += 32 * offset;
// registers to store an entire work unit
uint4 B[4], C[4];
uint32_t ((*XB)[16+4]) = (uint32_t (*)[16+4])&X[warpIdx][Y][Z];
uint32_t *XX = X[warpIdx][warpThread];
uint32_t pos = (N-1)/LOOKUP_GAP; uint32_t loop = 1 + (N-1)-pos*LOOKUP_GAP;
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + pos*32 + 16+Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] = *((uint4*)&XX[4*idx]);
while (loop--)
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
for (int i = 0; i < N; i++) {
uint32_t j = C[0].x & (N-1);
uint32_t pos = j / LOOKUP_GAP; uint32_t loop = j - pos*LOOKUP_GAP;
XX[16] = 32 * pos;
uint4 b[4], c[4];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) b[idx] = *((uint4*)&XX[4*idx]);
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8) { unsigned int loc = (SCRATCH*(offset+wu+Y) + XB[wu][16-Z] + 16+Z)/4;
*((uint4*)XB[wu]) = ((TEX_DIM == 1) ?
tex1Dfetch(texRef1D_4_V, loc) :
tex2D(texRef2D_4_V, 0.5f + (loc%TEXWIDTH), 0.5f + (loc/TEXWIDTH))); }
#pragma unroll 4
for (int idx=0; idx < 4; idx++) c[idx] = *((uint4*)&XX[4*idx]);
while (loop--)
switch(ALGO) {
case A_SCRYPT: xor_salsa8(b, c); xor_salsa8(c, b); break;
case A_SCRYPT_JANE: xor_chacha8(b, c); xor_chacha8(c, b); break;
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) B[idx] ^= b[idx];
#pragma unroll 4
for (int idx=0; idx < 4; idx++) C[idx] ^= c[idx];
switch(ALGO) {
case A_SCRYPT: xor_salsa8(B, C); xor_salsa8(C, B); break;
case A_SCRYPT_JANE: xor_chacha8(B, C); xor_chacha8(C, B); break;
}
}
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = B[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+Z])) = *((ulonglong2*)XB[wu]);
#pragma unroll 4
for (int idx=0; idx < 4; idx++) *((uint4*)&XX[4*idx]) = C[idx];
#pragma unroll 4
for (int wu=0; wu < 32; wu+=8)
*((ulonglong2*)(&g_odata[32*(wu+Y)+16+Z])) = *((ulonglong2*)XB[wu]);
}