|
|
|
|
#include <cuda.h>
|
|
|
|
|
#include "cuda_runtime.h"
|
|
|
|
|
#include "device_launch_parameters.h"
|
|
|
|
|
#include "sm_30_intrinsics.h"
|
|
|
|
|
|
|
|
|
|
#include <stdio.h>
|
|
|
|
|
#include <memory.h>
|
|
|
|
|
#include <stdint.h>
|
|
|
|
|
|
|
|
|
|
// aus cpu-miner.c
|
|
|
|
|
extern int device_map[8];
|
|
|
|
|
|
|
|
|
|
// diese Struktur wird in der Init Funktion angefordert
|
|
|
|
|
static cudaDeviceProp props[8];
|
|
|
|
|
|
|
|
|
|
static uint32_t *d_tempBranch1Nonces[8];
|
|
|
|
|
static uint32_t *d_numValid[8];
|
|
|
|
|
static uint32_t *h_numValid[8];
|
|
|
|
|
|
|
|
|
|
static uint32_t *d_partSum[2][8]; // f<EFBFBD>r bis zu vier partielle Summen
|
|
|
|
|
|
|
|
|
|
// aus heavy.cu
|
|
|
|
|
extern cudaError_t MyStreamSynchronize(cudaStream_t stream, int situation, int thr_id);
|
|
|
|
|
|
|
|
|
|
// True/False tester
|
|
|
|
|
typedef uint32_t(*cuda_compactTestFunction_t)(uint32_t *inpHash);
|
|
|
|
|
|
|
|
|
|
__device__ uint32_t QuarkTrueTest(uint32_t *inpHash)
|
|
|
|
|
{
|
|
|
|
|
return ((inpHash[0] & 0x08) == 0x08);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__device__ uint32_t QuarkFalseTest(uint32_t *inpHash)
|
|
|
|
|
{
|
|
|
|
|
return ((inpHash[0] & 0x08) == 0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__device__ cuda_compactTestFunction_t d_QuarkTrueFunction = QuarkTrueTest, d_QuarkFalseFunction = QuarkFalseTest;
|
|
|
|
|
cuda_compactTestFunction_t h_QuarkTrueFunction[8], h_QuarkFalseFunction[8];
|
|
|
|
|
|
|
|
|
|
// Setup-Funktionen
|
|
|
|
|
__host__ void quark_compactTest_cpu_init(int thr_id, int threads)
|
|
|
|
|
{
|
|
|
|
|
cudaGetDeviceProperties(&props[thr_id], device_map[thr_id]);
|
|
|
|
|
|
|
|
|
|
cudaMemcpyFromSymbol(&h_QuarkTrueFunction[thr_id], d_QuarkTrueFunction, sizeof(cuda_compactTestFunction_t));
|
|
|
|
|
cudaMemcpyFromSymbol(&h_QuarkFalseFunction[thr_id], d_QuarkFalseFunction, sizeof(cuda_compactTestFunction_t));
|
|
|
|
|
|
|
|
|
|
// wir brauchen auch Speicherplatz auf dem Device
|
|
|
|
|
cudaMalloc(&d_tempBranch1Nonces[thr_id], sizeof(uint32_t) * threads * 2);
|
|
|
|
|
cudaMalloc(&d_numValid[thr_id], 2*sizeof(uint32_t));
|
|
|
|
|
cudaMallocHost(&h_numValid[thr_id], 2*sizeof(uint32_t));
|
|
|
|
|
|
|
|
|
|
uint32_t s1;
|
|
|
|
|
s1 = (threads / 256) * 2;
|
|
|
|
|
|
|
|
|
|
cudaMalloc(&d_partSum[0][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block)
|
|
|
|
|
cudaMalloc(&d_partSum[1][thr_id], sizeof(uint32_t) * s1); // BLOCKSIZE (Threads/Block)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#if __CUDA_ARCH__ < 300
|
|
|
|
|
/**
|
|
|
|
|
* __shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID, and clamping to the range 0..width-1
|
|
|
|
|
*/
|
|
|
|
|
#undef __shfl_up
|
|
|
|
|
#define __shfl_up(var, delta, width) (0)
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Die Summenfunktion (vom NVIDIA SDK)
|
|
|
|
|
__global__ void quark_compactTest_gpu_SCAN(uint32_t *data, int width, uint32_t *partial_sums=NULL, cuda_compactTestFunction_t testFunc=NULL, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL)
|
|
|
|
|
{
|
|
|
|
|
extern __shared__ uint32_t sums[];
|
|
|
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
|
|
|
//int lane_id = id % warpSize;
|
|
|
|
|
int lane_id = id % width;
|
|
|
|
|
// determine a warp_id within a block
|
|
|
|
|
//int warp_id = threadIdx.x / warpSize;
|
|
|
|
|
int warp_id = threadIdx.x / width;
|
|
|
|
|
|
|
|
|
|
sums[lane_id] = 0;
|
|
|
|
|
|
|
|
|
|
// Below is the basic structure of using a shfl instruction
|
|
|
|
|
// for a scan.
|
|
|
|
|
// Record "value" as a variable - we accumulate it along the way
|
|
|
|
|
uint32_t value;
|
|
|
|
|
if(testFunc != NULL)
|
|
|
|
|
{
|
|
|
|
|
if (id < threads)
|
|
|
|
|
{
|
|
|
|
|
uint32_t *inpHash;
|
|
|
|
|
if(d_validNonceTable == NULL)
|
|
|
|
|
{
|
|
|
|
|
// keine Nonce-Liste
|
|
|
|
|
inpHash = &inpHashes[id<<4];
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
// Nonce-Liste verf<EFBFBD>gbar
|
|
|
|
|
int nonce = d_validNonceTable[id] - startNounce;
|
|
|
|
|
inpHash = &inpHashes[nonce<<4];
|
|
|
|
|
}
|
|
|
|
|
value = (*testFunc)(inpHash);
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
value = 0;
|
|
|
|
|
}
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
value = data[id];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
// Now accumulate in log steps up the chain
|
|
|
|
|
// compute sums, with another thread's value who is
|
|
|
|
|
// distance delta away (i). Note
|
|
|
|
|
// those threads where the thread 'i' away would have
|
|
|
|
|
// been out of bounds of the warp are unaffected. This
|
|
|
|
|
// creates the scan sum.
|
|
|
|
|
#pragma unroll
|
|
|
|
|
|
|
|
|
|
for (int i=1; i<=width; i*=2)
|
|
|
|
|
{
|
|
|
|
|
uint32_t n = __shfl_up((int)value, i, width);
|
|
|
|
|
|
|
|
|
|
if (lane_id >= i) value += n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// value now holds the scan value for the individual thread
|
|
|
|
|
// next sum the largest values for each warp
|
|
|
|
|
|
|
|
|
|
// write the sum of the warp to smem
|
|
|
|
|
//if (threadIdx.x % warpSize == warpSize-1)
|
|
|
|
|
if (threadIdx.x % width == width-1)
|
|
|
|
|
{
|
|
|
|
|
sums[warp_id] = value;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
|
// scan sum the warp sums
|
|
|
|
|
// the same shfl scan operation, but performed on warp sums
|
|
|
|
|
//
|
|
|
|
|
if (warp_id == 0)
|
|
|
|
|
{
|
|
|
|
|
uint32_t warp_sum = sums[lane_id];
|
|
|
|
|
|
|
|
|
|
for (int i=1; i<=width; i*=2)
|
|
|
|
|
{
|
|
|
|
|
uint32_t n = __shfl_up((int)warp_sum, i, width);
|
|
|
|
|
|
|
|
|
|
if (lane_id >= i) warp_sum += n;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
sums[lane_id] = warp_sum;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
|
|
|
|
|
// perform a uniform add across warps in the block
|
|
|
|
|
// read neighbouring warp's sum and add it to threads value
|
|
|
|
|
uint32_t blockSum = 0;
|
|
|
|
|
|
|
|
|
|
if (warp_id > 0)
|
|
|
|
|
{
|
|
|
|
|
blockSum = sums[warp_id-1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value += blockSum;
|
|
|
|
|
|
|
|
|
|
// Now write out our result
|
|
|
|
|
data[id] = value;
|
|
|
|
|
|
|
|
|
|
// last thread has sum, write write out the block's sum
|
|
|
|
|
if (partial_sums != NULL && threadIdx.x == blockDim.x-1)
|
|
|
|
|
{
|
|
|
|
|
partial_sums[blockIdx.x] = value;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Uniform add: add partial sums array
|
|
|
|
|
__global__ void quark_compactTest_gpu_ADD(uint32_t *data, uint32_t *partial_sums, int len)
|
|
|
|
|
{
|
|
|
|
|
__shared__ uint32_t buf;
|
|
|
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
|
|
|
|
|
|
|
|
if (id > len) return;
|
|
|
|
|
|
|
|
|
|
if (threadIdx.x == 0)
|
|
|
|
|
{
|
|
|
|
|
buf = partial_sums[blockIdx.x];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__syncthreads();
|
|
|
|
|
data[id] += buf;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Der Scatter
|
|
|
|
|
__global__ void quark_compactTest_gpu_SCATTER(uint32_t *sum, uint32_t *outp, cuda_compactTestFunction_t testFunc, int threads=0, uint32_t startNounce=0, uint32_t *inpHashes=NULL, uint32_t *d_validNonceTable=NULL)
|
|
|
|
|
{
|
|
|
|
|
int id = ((blockIdx.x * blockDim.x) + threadIdx.x);
|
|
|
|
|
uint32_t actNounce = id;
|
|
|
|
|
uint32_t value;
|
|
|
|
|
if (id < threads)
|
|
|
|
|
{
|
|
|
|
|
// uint32_t nounce = startNounce + id;
|
|
|
|
|
uint32_t *inpHash;
|
|
|
|
|
if(d_validNonceTable == NULL)
|
|
|
|
|
{
|
|
|
|
|
// keine Nonce-Liste
|
|
|
|
|
inpHash = &inpHashes[id<<4];
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
// Nonce-Liste verf<EFBFBD>gbar
|
|
|
|
|
int nonce = d_validNonceTable[id] - startNounce;
|
|
|
|
|
actNounce = nonce;
|
|
|
|
|
inpHash = &inpHashes[nonce<<4];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
value = (*testFunc)(inpHash);
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
value = 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if( value )
|
|
|
|
|
{
|
|
|
|
|
int idx = sum[id];
|
|
|
|
|
if(idx > 0)
|
|
|
|
|
outp[idx-1] = startNounce + actNounce;
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ static uint32_t quark_compactTest_roundUpExp(uint32_t val)
|
|
|
|
|
{
|
|
|
|
|
if(val == 0)
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
|
|
uint32_t mask = 0x80000000;
|
|
|
|
|
while( (val & mask) == 0 ) mask = mask >> 1;
|
|
|
|
|
|
|
|
|
|
if( (val & (~mask)) != 0 )
|
|
|
|
|
return mask << 1;
|
|
|
|
|
|
|
|
|
|
return mask;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ void quark_compactTest_cpu_singleCompaction(int thr_id, int threads, uint32_t *nrm,
|
|
|
|
|
uint32_t *d_nonces1, cuda_compactTestFunction_t function,
|
|
|
|
|
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable)
|
|
|
|
|
{
|
|
|
|
|
int orgThreads = threads;
|
|
|
|
|
threads = (int)quark_compactTest_roundUpExp((uint32_t)threads);
|
|
|
|
|
// threadsPerBlock ausrechnen
|
|
|
|
|
int blockSize = 256;
|
|
|
|
|
int nSummen = threads / blockSize;
|
|
|
|
|
|
|
|
|
|
int thr1 = (threads+blockSize-1) / blockSize;
|
|
|
|
|
int thr2 = threads / (blockSize*blockSize);
|
|
|
|
|
int blockSize2 = (nSummen < blockSize) ? nSummen : blockSize;
|
|
|
|
|
int thr3 = (nSummen + blockSize2-1) / blockSize2;
|
|
|
|
|
|
|
|
|
|
bool callThrid = (thr2 > 0) ? true : false;
|
|
|
|
|
|
|
|
|
|
// Erster Initialscan
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(
|
|
|
|
|
d_tempBranch1Nonces[thr_id], 32, d_partSum[0][thr_id], function, orgThreads, startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
|
|
|
|
|
// weitere Scans
|
|
|
|
|
if(callThrid)
|
|
|
|
|
{
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], 32, d_partSum[1][thr_id]);
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum[1][thr_id], (thr2>32) ? 32 : thr2);
|
|
|
|
|
}else
|
|
|
|
|
{
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr3,blockSize2, 32*sizeof(uint32_t)>>>(d_partSum[0][thr_id], (blockSize2>32) ? 32 : blockSize2);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Sync + Anzahl merken
|
|
|
|
|
cudaStreamSynchronize(NULL);
|
|
|
|
|
|
|
|
|
|
if(callThrid)
|
|
|
|
|
cudaMemcpy(nrm, &(d_partSum[1][thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
|
else
|
|
|
|
|
cudaMemcpy(nrm, &(d_partSum[0][thr_id])[nSummen-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// Addieren
|
|
|
|
|
if(callThrid)
|
|
|
|
|
{
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum[0][thr_id]+blockSize, d_partSum[1][thr_id], blockSize*thr2);
|
|
|
|
|
}
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum[0][thr_id], threads);
|
|
|
|
|
|
|
|
|
|
// Scatter
|
|
|
|
|
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1,
|
|
|
|
|
function, orgThreads, startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
|
|
|
|
|
// Sync
|
|
|
|
|
cudaStreamSynchronize(NULL);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
////// ACHTUNG: Diese funktion geht aktuell nur mit threads > 65536 (Am besten 256 * 1024 oder 256*2048)
|
|
|
|
|
__host__ void quark_compactTest_cpu_dualCompaction(int thr_id, int threads, uint32_t *nrm,
|
|
|
|
|
uint32_t *d_nonces1, uint32_t *d_nonces2,
|
|
|
|
|
uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable)
|
|
|
|
|
{
|
|
|
|
|
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[0], d_nonces1, h_QuarkTrueFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
quark_compactTest_cpu_singleCompaction(thr_id, threads, &nrm[1], d_nonces2, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
// threadsPerBlock ausrechnen
|
|
|
|
|
int blockSize = 256;
|
|
|
|
|
int thr1 = threads / blockSize;
|
|
|
|
|
int thr2 = threads / (blockSize*blockSize);
|
|
|
|
|
|
|
|
|
|
// 1
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch1Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes);
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]);
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2);
|
|
|
|
|
cudaStreamSynchronize(NULL);
|
|
|
|
|
cudaMemcpy(&nrm[0], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2);
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch1Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads);
|
|
|
|
|
|
|
|
|
|
// 2
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr1,blockSize, 32*sizeof(uint32_t)>>>(d_tempBranch2Nonces[thr_id], 32, d_partSum1[thr_id], h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes);
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<thr2,blockSize, 32*sizeof(uint32_t)>>>(d_partSum1[thr_id], 32, d_partSum2[thr_id]);
|
|
|
|
|
quark_compactTest_gpu_SCAN<<<1, thr2, 32*sizeof(uint32_t)>>>(d_partSum2[thr_id], (thr2>32) ? 32 : thr2);
|
|
|
|
|
cudaStreamSynchronize(NULL);
|
|
|
|
|
cudaMemcpy(&nrm[1], &(d_partSum2[thr_id])[thr2-1], sizeof(uint32_t), cudaMemcpyDeviceToHost);
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr2-1, blockSize>>>(d_partSum1[thr_id]+blockSize, d_partSum2[thr_id], blockSize*thr2);
|
|
|
|
|
quark_compactTest_gpu_ADD<<<thr1-1, blockSize>>>(d_tempBranch2Nonces[thr_id]+blockSize, d_partSum1[thr_id], threads);
|
|
|
|
|
|
|
|
|
|
// Hier ist noch eine Besonderheit: in d_tempBranch1Nonces sind die element von 1...nrm1 die Interessanten
|
|
|
|
|
// Schritt 3: Scatter
|
|
|
|
|
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch1Nonces[thr_id], d_nonces1, h_QuarkTrueFunction[thr_id], threads, startNounce, inpHashes);
|
|
|
|
|
quark_compactTest_gpu_SCATTER<<<thr1,blockSize,0>>>(d_tempBranch2Nonces[thr_id], d_nonces2, h_QuarkFalseFunction[thr_id], threads, startNounce, inpHashes);
|
|
|
|
|
cudaStreamSynchronize(NULL);
|
|
|
|
|
*/
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ void quark_compactTest_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable,
|
|
|
|
|
uint32_t *d_nonces1, size_t *nrm1,
|
|
|
|
|
uint32_t *d_nonces2, size_t *nrm2,
|
|
|
|
|
int order)
|
|
|
|
|
{
|
|
|
|
|
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind
|
|
|
|
|
// "threads" ist in diesem Fall auf die L<EFBFBD>nge dieses Array's zu setzen!
|
|
|
|
|
|
|
|
|
|
quark_compactTest_cpu_dualCompaction(thr_id, threads,
|
|
|
|
|
h_numValid[thr_id], d_nonces1, d_nonces2,
|
|
|
|
|
startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
|
|
|
|
|
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser
|
|
|
|
|
*nrm1 = (size_t)h_numValid[thr_id][0];
|
|
|
|
|
*nrm2 = (size_t)h_numValid[thr_id][1];
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
__host__ void quark_compactTest_single_false_cpu_hash_64(int thr_id, int threads, uint32_t startNounce, uint32_t *inpHashes, uint32_t *d_validNonceTable,
|
|
|
|
|
uint32_t *d_nonces1, size_t *nrm1,
|
|
|
|
|
int order)
|
|
|
|
|
{
|
|
|
|
|
// Wenn validNonceTable genutzt wird, dann werden auch nur die Nonces betrachtet, die dort enthalten sind
|
|
|
|
|
// "threads" ist in diesem Fall auf die L<EFBFBD>nge dieses Array's zu setzen!
|
|
|
|
|
|
|
|
|
|
quark_compactTest_cpu_singleCompaction(thr_id, threads, h_numValid[thr_id], d_nonces1, h_QuarkFalseFunction[thr_id], startNounce, inpHashes, d_validNonceTable);
|
|
|
|
|
|
|
|
|
|
cudaStreamSynchronize(NULL); // Das original braucht zwar etwas CPU-Last, ist an dieser Stelle aber evtl besser
|
|
|
|
|
*nrm1 = (size_t)h_numValid[thr_id][0];
|
|
|
|
|
}
|