GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

500 lines
15 KiB

/* Ziftrcoin ZR5 CUDA Implementation, (c) tpruvot 2015 */
extern "C" {
#include "sph/sph_blake.h"
#include "sph/sph_groestl.h"
#include "sph/sph_skein.h"
#include "sph/sph_jh.h"
#include "sph/sph_keccak.h"
}
#include "miner.h"
#include "cuda_helper.h"
#include <stdio.h>
#include <memory.h>
#define ZR_BLAKE 0
#define ZR_GROESTL 1
#define ZR_JH512 2
#define ZR_SKEIN 3
#define POK_BOOL_MASK 0x00008000
#define POK_DATA_MASK 0xFFFF0000
static uint32_t* d_hash[MAX_GPUS];
static uint16_t* d_poks[MAX_GPUS];
static uint32_t**d_buffers[MAX_GPUS];
static uint8_t* d_permut[MAX_GPUS];
static uint32_t* d_blake[MAX_GPUS];
static uint32_t* d_groes[MAX_GPUS];
static uint32_t* d_jh512[MAX_GPUS];
static uint32_t* d_skein[MAX_GPUS];
static uint8_t* d_txs[MAX_GPUS];
__constant__ uint16_t c_txlens[POK_MAX_TXS];
__constant__ uint8_t c_permut[24][4];
static const uint8_t permut[24][4] = {
{0, 1, 2, 3},
{0, 1, 3, 2},
{0, 2, 1, 3},
{0, 2, 3, 1},
{0, 3, 1, 2},
{0, 3, 2, 1},
{1, 0, 2, 3},
{1, 0, 3, 2},
{1, 2, 0, 3},
{1, 2, 3, 0},
{1, 3, 0, 2},
{1, 3, 2, 0},
{2, 0, 1, 3},
{2, 0, 3, 1},
{2, 1, 0, 3},
{2, 1, 3, 0},
{2, 3, 0, 1},
{2, 3, 1, 0},
{3, 0, 1, 2},
{3, 0, 2, 1},
{3, 1, 0, 2},
{3, 1, 2, 0},
{3, 2, 0, 1},
{3, 2, 1, 0}
};
// CPU HASH
extern "C" void zr5hash(void *output, const void *input)
{
sph_keccak512_context ctx_keccak;
sph_blake512_context ctx_blake;
sph_groestl512_context ctx_groestl;
sph_jh512_context ctx_jh;
sph_skein512_context ctx_skein;
uchar _ALIGN(64) hash[64];
uint32_t *phash = (uint32_t *) hash;
uint32_t norder;
sph_keccak512_init(&ctx_keccak);
sph_keccak512(&ctx_keccak, (const void*) input, 80);
sph_keccak512_close(&ctx_keccak, (void*) phash);
norder = phash[0] % ARRAY_SIZE(permut); /* % 24 */
for(int i = 0; i < 4; i++)
{
switch (permut[norder][i]) {
case ZR_BLAKE:
sph_blake512_init(&ctx_blake);
sph_blake512(&ctx_blake, (const void*) phash, 64);
sph_blake512_close(&ctx_blake, phash);
break;
case ZR_GROESTL:
sph_groestl512_init(&ctx_groestl);
sph_groestl512(&ctx_groestl, (const void*) phash, 64);
sph_groestl512_close(&ctx_groestl, phash);
break;
case ZR_JH512:
sph_jh512_init(&ctx_jh);
sph_jh512(&ctx_jh, (const void*) phash, 64);
sph_jh512_close(&ctx_jh, phash);
break;
case ZR_SKEIN:
sph_skein512_init(&ctx_skein);
sph_skein512(&ctx_skein, (const void*) phash, 64);
sph_skein512_close(&ctx_skein, phash);
break;
default:
break;
}
}
memcpy(output, phash, 32);
}
extern "C" void zr5hash_pok(void *output, uint32_t *pdata)
{
uint32_t _ALIGN(64) hash[8];
const uint32_t version = (pdata[0] & (~POK_DATA_MASK)) | (use_pok ? POK_BOOL_MASK : 0);
pdata[0] = version;
zr5hash(hash, pdata);
// fill PoK
pdata[0] = version | (hash[0] & POK_DATA_MASK);
zr5hash(hash, pdata);
memcpy(output, hash, 32);
}
// ------------------------------------------------------------------------------------------------
__global__ __launch_bounds__(128, 8)
void zr5_init_vars_gpu(uint32_t threads, uint32_t* d_hash, uint8_t* d_permut, uint32_t** d_buffers,
uint32_t* d_blake, uint32_t* d_groes, uint32_t* d_jh512, uint32_t* d_skein)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
uint32_t offset = thread * 16U; // 64U / sizeof(uint32_t);
uint32_t *phash = &d_hash[offset];
// store the algos order for other procs
const uint8_t norder = (phash[0] % ARRAY_SIZE(permut));
const uint8_t algo = c_permut[norder][0];
d_permut[thread] = norder;
// init array for other procs
d_buffers[0] = d_blake;
d_buffers[1] = d_groes;
d_buffers[2] = d_jh512;
d_buffers[3] = d_skein;
// Copy From d_hash to the first algo buffer
// uint4 = 4x uint32_t = 16 bytes
uint4 *psrc = (uint4*) phash;
uint4 *pdst = (uint4*) (d_buffers[algo] + offset);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__host__
void zr5_init_vars(int thr_id, uint32_t threads)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
zr5_init_vars_gpu <<<grid, block>>> (
threads, d_hash[thr_id], d_permut[thr_id], d_buffers[thr_id],
d_blake[thr_id], d_groes[thr_id], d_jh512[thr_id], d_skein[thr_id]
);
}
__global__ __launch_bounds__(128, 8)
void zr5_move_data_to_hash_gpu(const uint32_t threads, const int rnd, uint32_t** const d_buffers, uint8_t *d_permut, uint32_t *d_hash)
{
// copy 64 bytes hash from/to the right algo buffers
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint8_t norder = d_permut[thread];
const uint8_t algodst = c_permut[norder][rnd];
const uint8_t algosrc = c_permut[norder][rnd-1];
const uint32_t offset = thread * (64 / 4);
// uint4 = 4x uint32_t = 16 bytes
uint4 *psrc = (uint4*) (d_buffers[algosrc] + offset);
uint4 *pdst = (uint4*) (d_buffers[algodst] + offset);
pdst[0] = psrc[0];
pdst[1] = psrc[1];
pdst[2] = psrc[2];
pdst[3] = psrc[3];
}
}
__host__
void zr5_move_data_to_hash(int thr_id, uint32_t threads, int rnd)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
zr5_move_data_to_hash_gpu <<<grid, block>>> (threads, rnd, d_buffers[thr_id], d_permut[thr_id], d_hash[thr_id]);
}
__global__ __launch_bounds__(128, 8)
void zr5_get_poks_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* const d_permut, uint16_t *d_poks)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint8_t norder = d_permut[thread];
const uint8_t algosrc = c_permut[norder][3];
// copy only pok
const uint32_t offset = thread * 16U; // 64 / 4;
uint16_t* hash0 = (uint16_t*) (d_buffers[algosrc] + offset);
d_poks[thread] = hash0[1];
}
}
__global__ __launch_bounds__(128, 4)
void zr5_get_poks_xor_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* d_permut, uint16_t* d_poks, uint8_t* d_txs, uint8_t txs)
{
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint8_t norder = d_permut[thread];
const uint8_t algo = c_permut[norder][3];
const uint8_t ntx = norder % txs; // generally 0 on testnet...
const uint32_t offset = thread * 16U; // 64 / 4;
uint32_t* hash = (uint32_t*) (d_buffers[algo] + offset);
uint32_t randNdx = hash[1] % c_txlens[ntx];
uint8_t* ptx = &d_txs[POK_MAX_TX_SZ*ntx] + randNdx;
uint32_t x = 0x100UL * ptx[3] + ptx[2];
d_poks[thread] = x ^ (hash[2] >> 16);
}
}
__host__
void zr5_get_poks(int thr_id, uint32_t threads, uint16_t* d_poks, struct work* work)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
uint8_t txs = (uint8_t) work->tx_count;
if (txs && use_pok)
{
uint32_t txlens[POK_MAX_TXS];
uint8_t* txdata = (uint8_t*) calloc(POK_MAX_TXS, POK_MAX_TX_SZ);
if (!txdata) {
applog(LOG_ERR, "%s: error, memory alloc failure", __func__);
return;
}
// create blocs to copy on device
for (uint8_t tx=0; tx < txs; tx++) {
txlens[tx] = (uint32_t) (work->txs[tx].len - 3U);
memcpy(&txdata[POK_MAX_TX_SZ*tx], work->txs[tx].data, min(POK_MAX_TX_SZ, txlens[tx]+3U));
}
cudaMemcpy(d_txs[thr_id], txdata, txs * POK_MAX_TX_SZ, cudaMemcpyHostToDevice);
CUDA_SAFE_CALL(cudaMemcpyToSymbol(c_txlens, txlens, txs * sizeof(uint32_t), 0, cudaMemcpyHostToDevice));
zr5_get_poks_xor_gpu <<<grid, block>>> (threads, d_buffers[thr_id], d_permut[thr_id], d_poks, d_txs[thr_id], txs);
free(txdata);
} else {
zr5_get_poks_gpu <<<grid, block>>> (threads, d_buffers[thr_id], d_permut[thr_id], d_poks);
}
}
__global__ __launch_bounds__(128, 8)
void zr5_final_round_data_gpu(uint32_t threads, uint32_t** const d_buffers, uint8_t* const d_permut, uint32_t *d_hash, uint16_t *d_poks)
{
// after the 4 algos rounds, copy back hash to d_hash
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint8_t norder = d_permut[thread];
const uint8_t algosrc = c_permut[norder][3];
const uint32_t offset = thread * 16U; // 64 / 4;
// copy only hash[4..7]
uint2 *psrc = (uint2*) (d_buffers[algosrc] + offset);
uint2 *phash = (uint2*) (&d_hash[offset]);
phash[2] = psrc[2];
phash[3] = psrc[3];
}
}
__host__
void zr5_final_round(int thr_id, uint32_t threads)
{
const uint32_t threadsperblock = 128;
dim3 grid((threads + threadsperblock - 1) / threadsperblock);
dim3 block(threadsperblock);
zr5_final_round_data_gpu <<<grid, block>>> (threads, d_buffers[thr_id], d_permut[thr_id], d_hash[thr_id], d_poks[thr_id]);
}
extern void jackpot_keccak512_cpu_init(int thr_id, uint32_t threads);
extern void jackpot_keccak512_cpu_setBlock(void *pdata, size_t inlen);
extern void zr5_keccak512_cpu_hash(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_hash);
extern void zr5_keccak512_cpu_hash_pok(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t* pdata, uint32_t *d_hash, uint16_t *d_poks);
extern void quark_blake512_cpu_init(int thr_id, uint32_t threads);
extern void quark_blake512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_groestl512_cpu_init(int thr_id, uint32_t threads);
extern void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_groestl512_cpu_free(int thr_id);
extern void quark_jh512_cpu_init(int thr_id, uint32_t threads);
extern void quark_jh512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
extern void quark_skein512_cpu_init(int thr_id, uint32_t threads);
extern void quark_skein512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order);
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_zr5(int thr_id, struct work *work,
uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) tmpdata[20];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t oldp0 = pdata[0];
const uint32_t version = (oldp0 & (~POK_DATA_MASK)) | (use_pok ? POK_BOOL_MASK : 0);
const uint32_t first_nonce = pdata[19];
uint32_t throughput = cuda_default_throughput(thr_id, 1U << 18);
throughput = min(throughput, (1U << 20)-1024);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (opt_benchmark)
ptarget[7] = 0x0000ff;
memcpy(tmpdata, pdata, 80);
if (!init[thr_id])
{
cudaSetDevice(device_map[thr_id]);
// constants
cudaMemcpyToSymbol(c_permut, permut, 24*4, 0, cudaMemcpyHostToDevice);
// hash buffer = keccak hash 64 required
cudaMalloc(&d_hash[thr_id], 64 * throughput);
cudaMalloc(&d_poks[thr_id], sizeof(uint16_t) * throughput);
cudaMalloc(&d_permut[thr_id], sizeof(uint8_t) * throughput);
cudaMalloc(&d_buffers[thr_id], 4 * sizeof(uint32_t*));
// data buffers for the 4 rounds
cudaMalloc(&d_blake[thr_id], 64 * throughput);
cudaMalloc(&d_groes[thr_id], 64 * throughput);
cudaMalloc(&d_jh512[thr_id], 64 * throughput);
cudaMalloc(&d_skein[thr_id], 64 * throughput);
cudaMalloc(&d_txs[thr_id], POK_MAX_TXS * POK_MAX_TX_SZ);
jackpot_keccak512_cpu_init(thr_id, throughput);
quark_blake512_cpu_init(thr_id, throughput);
quark_groestl512_cpu_init(thr_id, throughput);
quark_jh512_cpu_init(thr_id, throughput);
quark_skein512_cpu_init(thr_id, throughput);
cuda_check_cpu_init(thr_id, throughput);
CUDA_SAFE_CALL(cudaDeviceSynchronize());
init[thr_id] = true;
}
tmpdata[0] = version;
jackpot_keccak512_cpu_setBlock((void*)tmpdata, 80);
cuda_check_cpu_setTarget(ptarget);
do {
int order = 0;
// Keccak512 Hash with CUDA
zr5_keccak512_cpu_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
zr5_init_vars(thr_id, throughput);
for (int rnd=0; rnd<4; rnd++) {
if (rnd > 0)
zr5_move_data_to_hash(thr_id, throughput, rnd);
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_blake[thr_id], order++);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_groes[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_jh512[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_skein[thr_id], order++);
}
// store on device d_poks all hash[0] prefixes
zr5_get_poks(thr_id, throughput, d_poks[thr_id], work);
// Keccak512 with pok
zr5_keccak512_cpu_hash_pok(thr_id, throughput, pdata[19], pdata, d_hash[thr_id], d_poks[thr_id]);
zr5_init_vars(thr_id, throughput);
for (int rnd=0; rnd<4; rnd++) {
if (rnd > 0)
zr5_move_data_to_hash(thr_id, throughput, rnd);
quark_blake512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_blake[thr_id], order++);
quark_groestl512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_groes[thr_id], order++);
quark_jh512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_jh512[thr_id], order++);
quark_skein512_cpu_hash_64(thr_id, throughput, pdata[19], NULL, d_skein[thr_id], order++);
}
zr5_final_round(thr_id, throughput);
uint32_t foundNonce = cuda_check_hash(thr_id, throughput, pdata[19], d_hash[thr_id]);
if (foundNonce != UINT32_MAX)
{
uint32_t vhash64[8];
uint32_t oldp19 = pdata[19];
uint32_t offset = foundNonce - pdata[19];
uint32_t pok = 0;
uint16_t h_pok;
*hashes_done = pdata[19] - first_nonce + throughput;
cudaMemcpy(&h_pok, d_poks[thr_id] + offset, sizeof(uint16_t), cudaMemcpyDeviceToHost);
pok = version | (0x10000UL * h_pok);
pdata[0] = pok; pdata[19] = foundNonce;
zr5hash(vhash64, pdata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
int res = 1;
work_set_target_ratio(work, vhash64);
uint32_t secNonce = cuda_check_hash_suppl(thr_id, throughput, oldp19, d_hash[thr_id], 1);
if (secNonce != 0) {
offset = secNonce - oldp19;
cudaMemcpy(&h_pok, d_poks[thr_id] + offset, sizeof(uint16_t), cudaMemcpyDeviceToHost);
pok = version | (0x10000UL * h_pok);
memcpy(tmpdata, pdata, 80);
tmpdata[0] = pok; tmpdata[19] = secNonce;
zr5hash(vhash64, tmpdata);
if (vhash64[7] <= ptarget[7] && fulltest(vhash64, ptarget)) {
if (bn_hash_target_ratio(vhash64, ptarget) > work->shareratio)
work_set_target_ratio(work, vhash64);
pdata[21] = secNonce;
pdata[22] = pok;
res++;
}
}
return res;
} else {
applog(LOG_WARNING, "GPU #%d: result for %08x does not validate on CPU!", device_map[thr_id], foundNonce);
pdata[19]++;
pdata[0] = oldp0;
}
} else
pdata[19] += throughput;
} while (pdata[19] < max_nonce && !work_restart[thr_id].restart);
pdata[0] = oldp0;
*hashes_done = pdata[19] - first_nonce + 1;
return 0;
}
// cleanup
extern "C" void free_zr5(int thr_id)
{
if (!init[thr_id])
return;
cudaSetDevice(device_map[thr_id]);
cudaFree(d_hash[thr_id]);
cudaFree(d_poks[thr_id]);
cudaFree(d_permut[thr_id]);
cudaFree(d_buffers[thr_id]);
cudaFree(d_blake[thr_id]);
cudaFree(d_groes[thr_id]);
cudaFree(d_jh512[thr_id]);
cudaFree(d_skein[thr_id]);
cudaFree(d_txs[thr_id]);
quark_groestl512_cpu_free(thr_id);
cuda_check_cpu_free(thr_id);
init[thr_id] = false;
cudaDeviceSynchronize();
}