ccminer-gostd-lite/compat/thrust/random/detail/normal_distribution_base.h

150 lines
3.9 KiB
C
Raw Normal View History

2014-03-18 22:17:40 +01:00
/*
* Copyright 2008-2012 NVIDIA Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Copyright Jens Maurer 2000-2001
* Distributed under the Boost Software License, Version 1.0. (See
* accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*/
#pragma once
#include <thrust/detail/config.h>
#include <thrust/pair.h>
#include <thrust/random/uniform_real_distribution.h>
#include <limits>
#include <cmath>
namespace thrust
{
namespace random
{
namespace detail
{
// this version samples the normal distribution directly
// and uses the non-standard math function erfcinv
template<typename RealType>
class normal_distribution_nvcc
{
protected:
template<typename UniformRandomNumberGenerator>
__host__ __device__
RealType sample(UniformRandomNumberGenerator &urng, const RealType mean, const RealType stddev)
{
typedef typename UniformRandomNumberGenerator::result_type uint_type;
const uint_type urng_range = UniformRandomNumberGenerator::max - UniformRandomNumberGenerator::min;
// Constants for conversion
const RealType S1 = static_cast<RealType>(1) / urng_range;
const RealType S2 = S1 / 2;
RealType S3 = static_cast<RealType>(-1.4142135623730950488016887242097); // -sqrt(2)
// Get the integer value
uint_type u = urng() - UniformRandomNumberGenerator::min;
// Ensure the conversion to float will give a value in the range [0,0.5)
if(u > (urng_range / 2))
{
u = urng_range - u;
S3 = -S3;
}
// Convert to floating point in [0,0.5)
RealType p = u*S1 + S2;
// Apply inverse error function
return mean + stddev * S3 * erfcinv(2 * p);
}
// no-op
__host__ __device__
void reset() {}
};
// this version samples the normal distribution using
// Marsaglia's "polar method"
template<typename RealType>
class normal_distribution_portable
{
protected:
normal_distribution_portable()
: m_valid(false)
{}
normal_distribution_portable(const normal_distribution_portable &other)
: m_valid(other.m_valid)
{}
void reset()
{
m_valid = false;
}
// note that we promise to call this member function with the same mean and stddev
template<typename UniformRandomNumberGenerator>
__host__ __device__
RealType sample(UniformRandomNumberGenerator &urng, const RealType mean, const RealType stddev)
{
// implementation from Boost
// allow for Koenig lookup
using std::sqrt; using std::log; using std::sin; using std::cos;
if(!m_valid)
{
uniform_real_distribution<RealType> u01;
m_r1 = u01(urng);
m_r2 = u01(urng);
m_cached_rho = sqrt(-RealType(2) * log(RealType(1)-m_r2));
m_valid = true;
}
else
{
m_valid = false;
}
const RealType pi = RealType(3.14159265358979323846);
RealType result = m_cached_rho * (m_valid ?
cos(RealType(2)*pi*m_r1) :
sin(RealType(2)*pi*m_r1));
return result;
}
private:
RealType m_r1, m_r2, m_cached_rho;
bool m_valid;
};
template<typename RealType>
struct normal_distribution_base
{
#if THRUST_DEVICE_COMPILER == THRUST_DEVICE_COMPILER_NVCC
typedef normal_distribution_nvcc<RealType> type;
#else
typedef normal_distribution_portable<RealType> type;
#endif
};
} // end detail
} // end random
} // end thrust