GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

491 lines
14 KiB

/**
* Optimized Blake-256 8-rounds Cuda Kernel (Tested on SM >3.0)
* Based upon Blake-256 implementation of Tanguy Pruvot - Nov. 2014
*
* Provos Alexis - Jan. 2016
*
* Fixed CUDA 7.5 flaw
* minor code changes
* code cleanup
* increased nonces per thread
* removed SSE2 midstate computation
* Provos Alexis - Mar 2016
*/
#include <stdint.h>
#include <memory.h>
#include "miner.h"
extern "C" {
#include "sph/sph_blake.h"
}
#include "cuda_helper.h"
#ifdef __INTELLISENSE__
#define __byte_perm(x, y, b) x
#endif
/* threads per block and nonces per thread */
#define TPB 768
#define NPT 384
#define NBN 2
__constant__ uint32_t _ALIGN(16) d_data[21];
/* 16 gpu threads max */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
static cudaStream_t streams[MAX_GPUS];
/* hash by cpu with blake 256 */
extern "C" void vanillahash(void *output, const void *input, int8_t blakerounds){
uchar hash[64];
sph_blake256_context ctx;
sph_blake256_set_rounds(blakerounds);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 80);
sph_blake256_close(&ctx, hash);
memcpy(output, hash, 32);
}
#define GS4(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2,a3,b3,c3,d3,x3,y3) { \
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
v[a3]+= (m[x3] ^ z[y3]) + v[b3]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x1032); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
v[c3]+= v[d3]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
v[b3] = ROTR32(v[b3] ^ v[c3], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
v[a3]+= (m[y3] ^ z[x3]) + v[b3]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
v[d3] = __byte_perm(v[d3] ^ v[a3], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
v[c3]+= v[d3]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
v[b3] = ROTR32(v[b3] ^ v[c3], 7); \
}
#define GS3(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1,a2,b2,c2,d2,x2,y2) { \
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
v[a2]+= (m[x2] ^ z[y2]) + v[b2]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x1032); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
v[b2] = ROTR32(v[b2] ^ v[c2], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
v[a2]+= (m[y2] ^ z[x2]) + v[b2]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
v[d2] = __byte_perm(v[d2] ^ v[a2], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
v[c2]+= v[d2]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
v[b2] = ROTR32(v[b2] ^ v[c2], 7); \
}
#define GS2(a,b,c,d,x,y,a1,b1,c1,d1,x1,y1) { \
v[ a]+= (m[ x] ^ z[ y]) + v[ b]; \
v[a1]+= (m[x1] ^ z[y1]) + v[b1]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x1032); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x1032); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 12); \
v[b1] = ROTR32(v[b1] ^ v[c1], 12); \
\
v[ a]+= (m[ y] ^ z[ x]) + v[ b]; \
v[a1]+= (m[y1] ^ z[x1]) + v[b1]; \
\
v[ d] = __byte_perm(v[ d] ^ v[ a], 0, 0x0321); \
v[d1] = __byte_perm(v[d1] ^ v[a1], 0, 0x0321); \
\
v[ c]+= v[ d]; \
v[c1]+= v[d1]; \
\
v[ b] = ROTR32(v[ b] ^ v[ c], 7); \
v[b1] = ROTR32(v[b1] ^ v[c1], 7); \
}
#define GS(a,b,c,d,x,y) { \
v[a] += (m[x] ^ z[y]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x1032); \
v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 12); \
v[a] += (m[y] ^ z[x]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a],0, 0x0321); \
v[c] += v[d]; \
v[b] = ROTR32(v[b] ^ v[c], 7); \
}
__global__ __launch_bounds__(TPB,1)
void vanilla_gpu_hash_16_8(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce,const uint64_t highTarget){
uint32_t _ALIGN(16) v[16];
uint32_t _ALIGN(16) tmp[16];
const size_t thread = blockDim.x * blockIdx.x + threadIdx.x;
const uint64_t step = gridDim.x * blockDim.x;
const uint64_t maxNonce = startNonce + threads;
const int8_t r[][16] = {
{ 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 },{ 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 },
{ 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 },{ 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 },
{ 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 },{ 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 },
{ 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 }
};
const uint32_t z[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344, 0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C, 0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
//PREFETCH
#pragma unroll
for(int i=0;i<16;i++){
tmp[ i] = d_data[ i];
}
uint32_t m[16] = {
d_data[16], d_data[17], d_data[18], 0,
0x80000000UL, 0, 0, 0,
0, 0, 0, 0,
0, 1, 0, 640
};
const uint32_t h7 = d_data[19];
const uint32_t h6 = d_data[20];
//END OF PREFETCH
uint64_t m3 = startNonce + thread;
loopstart:
if(m3>=maxNonce)return;
m[3] = m3;
#pragma unroll
for(int i=0;i<16;i++)
v[ i] = tmp[ i];
v[ 1]+= m[3] ^ z[2];
v[13] = __byte_perm(v[13] ^ v[1],0, 0x0321);
v[ 9]+= v[13];
v[ 5] = ROTR32(v[5] ^ v[9], 7);
v[ 0]+= v[5];
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
v[10]+= v[15];
v[ 5] = ROTR32(v[5] ^ v[10], 12);
v[ 0]+= z[8] + v[5];
v[15] = __byte_perm(v[15] ^ v[0],0, 0x0321);
v[10]+= v[15];
v[ 5] = ROTR32(v[5] ^ v[10], 7);
GS3( 1, 6,11,12,10,11, 2, 7, 8,13,12,13, 3, 4, 9,14,14,15);
#pragma unroll
for(int i=0;i<6;i++){
GS4(0, 4, 8,12,r[i][ 0],r[i][ 1], 1, 5, 9,13,r[i][ 2],r[i][ 3], 2, 6,10,14,r[i][ 4],r[i][ 5], 3, 7,11,15,r[i][ 6],r[i][ 7]);
GS4(0, 5,10,15,r[i][ 8],r[i][ 9], 1, 6,11,12,r[i][10],r[i][11], 2, 7, 8,13,r[i][12],r[i][13], 3, 4, 9,14,r[i][14],r[i][15]);
}
GS4(0, 4, 8,12,r[6][ 0],r[6][ 1], 1, 5, 9,13,r[6][ 2],r[6][ 3], 2, 6,10,14,r[6][ 4],r[6][ 5], 3, 7,11,15,r[6][ 6],r[6][ 7]);
v[ 0] += (m[ 5] ^ z[0]) + v[5];
v[ 2] += (m[ 8] ^ z[6]) + v[7];
v[13] = __byte_perm(v[13] ^ v[2],0, 0x1032);
v[15] = __byte_perm(v[15] ^ v[0],0, 0x1032);
v[ 8] += v[13];
v[10] += v[15];
v[ 5] = ROTR32(v[ 5] ^ v[10], 12);
v[ 7] = ROTR32(v[ 7] ^ v[ 8], 12);
v[ 0] += (m[ 0] ^ z[5]) + v[5];
v[ 2] += (m[ 6] ^ z[8]) + v[7];
v[15] = __byte_perm(v[15] ^ v[ 0],0, 0x0321);
v[13] = __byte_perm(v[13] ^ v[ 2],0, 0x0321);
v[8] += v[13];
v[7] = ROTR32(v[7] ^ v[8], 7);
// only compute h6 & 7
if((v[15]^h7)==v[7]){
v[ 1] += (m[15] ^ z[ 4]) + v[6];
v[ 3] += (m[2] ^ z[10]) + v[4];
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x1032);
v[14] = __byte_perm(v[14] ^ v[3],0, 0x1032);
v[11] += v[12];
v[ 9] += v[14];
v[ 6] = ROTR32(v[ 6] ^ v[11], 12);
v[ 1] += (m[ 4] ^ z[15]) + v[ 6];
v[ 3] += (m[10] ^ z[ 2]) + ROTR32(v[ 4] ^ v[ 9],12);
v[12] = __byte_perm(v[12] ^ v[ 1],0, 0x0321);
v[14] = __byte_perm(v[14] ^ v[ 3],0, 0x0321);
v[11] += v[12];
v[ 6] = ROTR32(v[ 6] ^ v[11], 7);
if(cuda_swab32(h6^v[6]^v[14]) <= highTarget) {
#if NBN == 2
/* keep the smallest nonce, + extra one if found */
if (m[3] < resNonce[0]){
resNonce[1] = resNonce[0];
resNonce[0] = m[3];
}
else
resNonce[1] = m[3];
#else
resNonce[0] = m[3];
#endif
return; //<-- this may cause a problem on extranonce if the extranonce is on position current_nonce + X * step where X=[1,2,3..,N]
}
}
m3+=step;
goto loopstart;
}
__host__
void vanilla_cpu_setBlock_16(const int thr_id,const uint32_t* endiandata, uint32_t *penddata){
const uint32_t _ALIGN(64) z[16] = {
SPH_C32(0x243F6A88), SPH_C32(0x85A308D3), SPH_C32(0x13198A2E), SPH_C32(0x03707344),
SPH_C32(0xA4093822), SPH_C32(0x299F31D0), SPH_C32(0x082EFA98), SPH_C32(0xEC4E6C89),
SPH_C32(0x452821E6), SPH_C32(0x38D01377), SPH_C32(0xBE5466CF), SPH_C32(0x34E90C6C),
SPH_C32(0xC0AC29B7), SPH_C32(0xC97C50DD), SPH_C32(0x3F84D5B5), SPH_C32(0xB5470917)
};
uint32_t _ALIGN(64) h[22];
sph_blake256_context ctx;
sph_blake256_set_rounds(8);
sph_blake256_init(&ctx);
sph_blake256(&ctx, endiandata, 64);
h[ 0] = ctx.H[0]; h[ 1] = ctx.H[1];
h[ 2] = ctx.H[2]; h[21] = ctx.H[3];
h[ 4] = ctx.H[4]; h[20] = ctx.H[5];
h[19] = ctx.H[6]; h[16] = ctx.H[7];
uint32_t tmp = h[20];
h[20] = h[19];
h[19] = h[16];
h[16] = penddata[ 0];
h[17] = penddata[ 1];
h[18] = penddata[ 2];
h[12] = z[ 4] ^ 640;
h[ 8] = z[ 0];
h[ 0] += (h[16] ^ z[ 1]) + h[ 4];
h[12] = SPH_ROTR32(h[12] ^ h[0],16);
h[ 8] += h[12];
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 12);
h[ 0] += (h[17] ^ z[ 0]) + h[ 4];
h[12] = SPH_ROTR32(h[12] ^ h[0],8);
h[ 8] += h[12];
h[ 4] = SPH_ROTR32(h[ 4] ^ h[ 8], 7);
h[1] += (h[18] ^ z[ 3]) + tmp;
h[13] = SPH_ROTR32(z[ 5] ^ 640 ^ h[1],16);
h[ 5] = ROTR32(tmp ^ (z[ 1] + h[13]), 12);
h[ 1] += h[ 5];
h[ 2] += (0x80000000UL ^ z[ 5]) + h[20];
h[14] = SPH_ROTR32(z[ 6] ^ h[2], 16);
h[ 6] = z[ 2] + h[14];
h[ 6] = SPH_ROTR32(h[20] ^ h[ 6], 12);
h[21] += z[ 7] + h[19];
h[ 0] += z[ 9];
h[ 2] += z[ 4] + h[ 6];
h[ 9] = z[ 1] + h[13];
h[10] = z[ 2] + h[14];
h[14] = SPH_ROTR32(h[14] ^ h[2],8); //0x0321
h[10]+=h[14];
h[ 6] = SPH_ROTR32(h[ 6] ^ h[10],7);
h[15] = SPH_ROTR32(z[ 7] ^ h[21],16);
h[11] = z[ 3] + h[15];
h[ 7] = SPH_ROTR32(h[19] ^ h[11], 12);
h[ 3] = h[21] + h[ 7] + z[ 6];
h[15] = SPH_ROTR32(h[15] ^ h[ 3],8);
h[11]+= h[15];
h[ 7] = ROTR32(h[ 7] ^ h[11],7);
cudaMemcpyToSymbolAsync(d_data, h, 21*sizeof(uint32_t), 0, cudaMemcpyHostToDevice, streams[thr_id]);
}
static bool init[MAX_GPUS] = { 0 };
extern "C" int scanhash_vanilla(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done, const int8_t blakerounds)
{
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
const uint32_t first_nonce = pdata[19];
const uint32_t targetHigh = ptarget[6];
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 30 : 24;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
if (!init[thr_id]) {
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
gpulog(LOG_INFO, thr_id, "Intensity set to %g, %u cuda threads", throughput2intensity(throughput), throughput);
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
cudaStreamCreate(&streams[thr_id]);
init[thr_id] = true;
}
uint32_t _ALIGN(64) endiandata[20];
for (int k = 0; k < 16; k++)
be32enc(&endiandata[k], pdata[k]);
cudaMemsetAsync(d_resNonce[thr_id], 0xff, sizeof(uint32_t),streams[thr_id]);
vanilla_cpu_setBlock_16(thr_id,endiandata,&pdata[16]);
const dim3 grid((throughput + (NPT*TPB)-1)/(NPT*TPB));
const dim3 block(TPB);
int rc = 0;
do {
vanilla_gpu_hash_16_8<<<grid,block, 0, streams[thr_id]>>>(throughput, pdata[19], d_resNonce[thr_id], targetHigh);
cudaMemcpyAsync(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost,streams[thr_id]);
*hashes_done = pdata[19] - first_nonce + throughput;
cudaStreamSynchronize(streams[thr_id]);
if (h_resNonce[thr_id][0] != UINT32_MAX){
uint32_t vhashcpu[8];
uint32_t Htarg = (uint32_t)targetHigh;
for (int k=0; k < 19; k++)
be32enc(&endiandata[k], pdata[k]);
be32enc(&endiandata[19], h_resNonce[thr_id][0]);
vanillahash(vhashcpu, endiandata, blakerounds);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
work->valid_nonces = 1;
work->nonces[0] = h_resNonce[thr_id][0];
work_set_target_ratio(work, vhashcpu);
#if NBN > 1
if (h_resNonce[thr_id][1] != UINT32_MAX) {
work->nonces[1] = h_resNonce[thr_id][1];
be32enc(&endiandata[19], h_resNonce[thr_id][1]);
vanillahash(vhashcpu, endiandata, blakerounds);
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio[0]) {
work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[0], work->nonces[1]);
}
work->valid_nonces = 2;
pdata[19] = max(work->nonces[0], work->nonces[1]) + 1;
} else {
pdata[19] = work->nonces[0] + 1; // cursor
}
#endif
return work->valid_nonces;
}
else if (vhashcpu[6] > Htarg) {
gpu_increment_reject(thr_id);
if (!opt_quiet)
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", h_resNonce[thr_id][0]);
pdata[19] = work->nonces[0] + 1;
continue;
}
}
if ((uint64_t) throughput + pdata[19] >= max_nonce) {
pdata[19] = max_nonce;
break;
}
pdata[19] += throughput;
} while (!work_restart[thr_id].restart);
*hashes_done = pdata[19] - first_nonce;
MyStreamSynchronize(NULL, 0, dev_id);
return rc;
}
// cleanup
extern "C" void free_vanilla(int thr_id)
{
if (!init[thr_id])
return;
cudaThreadSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}