GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

212 lines
5.6 KiB

// Auf QuarkCoin spezialisierte Version von Groestl inkl. Bitslice
#include <stdio.h>
#include <memory.h>
#include <sys/types.h> // off_t
#include <cuda_helper.h>
#ifdef __INTELLISENSE__
#define __CUDA_ARCH__ 500
#endif
#define TPB 256
#define THF 4U
#if __CUDA_ARCH__ >= 300
#include "groestl_functions_quad.h"
#include "groestl_transf_quad.h"
#endif
#define WANT_GROESTL80
#ifdef WANT_GROESTL80
__constant__ static uint32_t c_Message80[20];
#endif
#include "cuda_quark_groestl512_sm2.cuh"
__global__ __launch_bounds__(TPB, THF)
void quark_groestl512_gpu_hash_64_quad(const uint32_t threads, const uint32_t startNounce, uint32_t * g_hash, uint32_t * __restrict g_nonceVector)
{
#if __CUDA_ARCH__ >= 300
// BEWARE : 4-WAY CODE (one hash need 4 threads)
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
if (thread < threads)
{
uint32_t message[8];
uint32_t state[8];
uint32_t nounce = g_nonceVector ? g_nonceVector[thread] : (startNounce + thread);
off_t hashPosition = nounce - startNounce;
uint32_t *pHash = &g_hash[hashPosition << 4];
const uint32_t thr = threadIdx.x & 0x3; // % THF
/*| M0 M1 M2 M3 | M4 M5 M6 M7 | (input)
--|-------------|-------------|
T0| 0 4 8 12 | 80 |
T1| 1 5 13 | |
T2| 2 6 14 | |
T3| 3 7 15 | 01 |
--|-------------|-------------| */
#pragma unroll
for(int k=0;k<4;k++) message[k] = pHash[thr + (k * THF)];
#pragma unroll
for(int k=4;k<8;k++) message[k] = 0;
if (thr == 0) message[4] = 0x80U; // end of data tag
if (thr == 3) message[7] = 0x01000000U;
uint32_t msgBitsliced[8];
to_bitslice_quad(message, msgBitsliced);
groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t hash[16];
from_bitslice_quad(state, hash);
// uint4 = 4x4 uint32_t = 16 bytes
if (thr == 0) {
uint4 *phash = (uint4*) hash;
uint4 *outpt = (uint4*) pHash;
outpt[0] = phash[0];
outpt[1] = phash[1];
outpt[2] = phash[2];
outpt[3] = phash[3];
}
}
#endif
}
__host__
void quark_groestl512_cpu_init(int thr_id, uint32_t threads)
{
int dev_id = device_map[thr_id];
cuda_get_arch(thr_id);
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_init(thr_id, threads);
}
__host__
void quark_groestl512_cpu_free(int thr_id)
{
int dev_id = device_map[thr_id];
if (device_sm[dev_id] < 300 || cuda_arch[dev_id] < 300)
quark_groestl512_sm20_free(thr_id);
}
__host__
void quark_groestl512_cpu_hash_64(int thr_id, uint32_t threads, uint32_t startNounce, uint32_t *d_nonceVector, uint32_t *d_hash, int order)
{
uint32_t threadsperblock = TPB;
// Compute 3.0 benutzt die registeroptimierte Quad Variante mit Warp Shuffle
// mit den Quad Funktionen brauchen wir jetzt 4 threads pro Hash, daher Faktor 4 bei der Blockzahl
const uint32_t factor = THF;
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
int dev_id = device_map[thr_id];
if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300)
quark_groestl512_gpu_hash_64_quad<<<grid, block>>>(threads, startNounce, d_hash, d_nonceVector);
else
quark_groestl512_sm20_hash_64(thr_id, threads, startNounce, d_nonceVector, d_hash, order);
}
// --------------------------------------------------------------------------------------------------------------------------------------------
#ifdef WANT_GROESTL80
__host__
void groestl512_setBlock_80(int thr_id, uint32_t *endiandata)
{
cudaMemcpyToSymbol(c_Message80, endiandata, sizeof(c_Message80), 0, cudaMemcpyHostToDevice);
}
__global__ __launch_bounds__(TPB, THF)
void groestl512_gpu_hash_80_quad(const uint32_t threads, const uint32_t startNounce, uint32_t * g_outhash)
{
#if __CUDA_ARCH__ >= 300
// BEWARE : 4-WAY CODE (one hash need 4 threads)
const uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x) >> 2;
if (thread < threads)
{
const uint32_t thr = threadIdx.x & 0x3; // % THF
/*| M0 M1 M2 M3 M4 | M5 M6 M7 | (input)
--|----------------|----------|
T0| 0 4 8 12 16 | 80 |
T1| 1 5 17 | |
T2| 2 6 18 | |
T3| 3 7 Nc | 01 |
--|----------------|----------| TPR */
uint32_t message[8];
#pragma unroll 5
for(int k=0; k<5; k++) message[k] = c_Message80[thr + (k * THF)];
#pragma unroll 3
for(int k=5; k<8; k++) message[k] = 0;
if (thr == 0) message[5] = 0x80U;
if (thr == 3) {
message[4] = cuda_swab32(startNounce + thread);
message[7] = 0x01000000U;
}
uint32_t msgBitsliced[8];
to_bitslice_quad(message, msgBitsliced);
uint32_t state[8];
groestl512_progressMessage_quad(state, msgBitsliced);
uint32_t hash[16];
from_bitslice_quad(state, hash);
if (thr == 0) { /* 4 threads were done */
const off_t hashPosition = thread;
//if (!thread) hash[15] = 0xFFFFFFFF;
uint4 *outpt = (uint4*) &g_outhash[hashPosition << 4];
uint4 *phash = (uint4*) hash;
outpt[0] = phash[0];
outpt[1] = phash[1];
outpt[2] = phash[2];
outpt[3] = phash[3];
}
}
#endif
}
__host__
void groestl512_cuda_hash_80(const int thr_id, const uint32_t threads, const uint32_t startNounce, uint32_t *d_hash)
{
int dev_id = device_map[thr_id];
if (device_sm[dev_id] >= 300 && cuda_arch[dev_id] >= 300) {
const uint32_t threadsperblock = TPB;
const uint32_t factor = THF;
dim3 grid(factor*((threads + threadsperblock-1)/threadsperblock));
dim3 block(threadsperblock);
groestl512_gpu_hash_80_quad <<<grid, block>>> (threads, startNounce, d_hash);
} else {
const uint32_t threadsperblock = 256;
dim3 grid((threads + threadsperblock-1)/threadsperblock);
dim3 block(threadsperblock);
groestl512_gpu_hash_80_sm2 <<<grid, block>>> (threads, startNounce, d_hash);
}
}
#endif