GOSTCoin CUDA miner project, compatible with most nvidia cards, containing only gostd algo
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

444 lines
11 KiB

/**
* Blake-256 Decred 180-Bytes input Cuda Kernel (Tested on SM 5/5.2)
*
* Tanguy Pruvot - Feb 2016
*/
#include <stdint.h>
#include <memory.h>
#include <miner.h>
extern "C" {
#include <sph/sph_blake.h>
}
/* threads per block */
#define TPB 256
/* hash by cpu with blake 256 */
extern "C" void decred_hash(void *output, const void *input)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 180);
sph_blake256_close(&ctx, output);
}
#include <cuda_helper.h>
#ifdef __INTELLISENSE__
#define __byte_perm(x, y, b) x
#endif
__constant__ uint32_t _ALIGN(4) d_data[24];
/* 16 adapters max */
static uint32_t *d_resNonce[MAX_GPUS];
static uint32_t *h_resNonce[MAX_GPUS];
/* max count of found nonces in one call */
#define NBN 2
#if NBN > 1
static uint32_t extra_results[NBN] = { UINT32_MAX };
#endif
/* ############################################################################################################################### */
#define GSPREC(a,b,c,d,x,y) { \
v[a] += (m[x] ^ c_u256[y]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a], 0, 0x1032); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 12); \
v[a] += (m[y] ^ c_u256[x]) + v[b]; \
v[d] = __byte_perm(v[d] ^ v[a], 0, 0x0321); \
v[c] += v[d]; \
v[b] = SPH_ROTR32(v[b] ^ v[c], 7); \
}
__device__ __forceinline__
void blake256_compress_14(uint32_t *h, const uint32_t nonce, const uint32_t T0)
{
uint32_t v[16];
#pragma unroll 8
for(uint32_t i = 0; i < 8; i++)
v[i] = h[i];
const uint32_t c_u256[16] = {
0x243F6A88, 0x85A308D3, 0x13198A2E, 0x03707344,
0xA4093822, 0x299F31D0, 0x082EFA98, 0xEC4E6C89,
0x452821E6, 0x38D01377, 0xBE5466CF, 0x34E90C6C,
0xC0AC29B7, 0xC97C50DD, 0x3F84D5B5, 0xB5470917
};
v[ 8] = c_u256[0];
v[ 9] = c_u256[1];
v[10] = c_u256[2];
v[11] = c_u256[3];
v[12] = c_u256[4] ^ T0;
v[13] = c_u256[5] ^ T0;
v[14] = c_u256[6];
v[15] = c_u256[7];
uint32_t m[16];
m[0] = d_data[8];
m[1] = d_data[9];
m[2] = d_data[10];
m[3] = nonce;
#pragma unroll
for (uint32_t i = 4; i < 16; i++) {
m[i] = d_data[i+8U];
}
// round 1
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10, 11);
GSPREC(2, 7, 0x8, 0xD, 12, 13);
GSPREC(3, 4, 0x9, 0xE, 14, 15);
// round 2
GSPREC(0, 4, 0x8, 0xC, 14, 10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// round 3
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15, 13);
GSPREC(0, 5, 0xA, 0xF, 10, 14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// round 4
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13, 12);
GSPREC(3, 7, 0xB, 0xF, 11, 14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
GSPREC(3, 4, 0x9, 0xE, 15, 8);
// round 5
GSPREC(0, 4, 0x8, 0xC, 9, 0);
GSPREC(1, 5, 0x9, 0xD, 5, 7);
GSPREC(2, 6, 0xA, 0xE, 2, 4);
GSPREC(3, 7, 0xB, 0xF, 10, 15);
GSPREC(0, 5, 0xA, 0xF, 14, 1);
GSPREC(1, 6, 0xB, 0xC, 11, 12);
GSPREC(2, 7, 0x8, 0xD, 6, 8);
GSPREC(3, 4, 0x9, 0xE, 3, 13);
// round 6
GSPREC(0, 4, 0x8, 0xC, 2, 12);
GSPREC(1, 5, 0x9, 0xD, 6, 10);
GSPREC(2, 6, 0xA, 0xE, 0, 11);
GSPREC(3, 7, 0xB, 0xF, 8, 3);
GSPREC(0, 5, 0xA, 0xF, 4, 13);
GSPREC(1, 6, 0xB, 0xC, 7, 5);
GSPREC(2, 7, 0x8, 0xD, 15,14);
GSPREC(3, 4, 0x9, 0xE, 1, 9);
// round 7
GSPREC(0, 4, 0x8, 0xC, 12, 5);
GSPREC(1, 5, 0x9, 0xD, 1, 15);
GSPREC(2, 6, 0xA, 0xE, 14,13);
GSPREC(3, 7, 0xB, 0xF, 4, 10);
GSPREC(0, 5, 0xA, 0xF, 0, 7);
GSPREC(1, 6, 0xB, 0xC, 6, 3);
GSPREC(2, 7, 0x8, 0xD, 9, 2);
GSPREC(3, 4, 0x9, 0xE, 8, 11);
// round 8
GSPREC(0, 4, 0x8, 0xC, 13,11);
GSPREC(1, 5, 0x9, 0xD, 7, 14);
GSPREC(2, 6, 0xA, 0xE, 12, 1);
GSPREC(3, 7, 0xB, 0xF, 3, 9);
GSPREC(0, 5, 0xA, 0xF, 5, 0);
GSPREC(1, 6, 0xB, 0xC, 15, 4);
GSPREC(2, 7, 0x8, 0xD, 8, 6);
GSPREC(3, 4, 0x9, 0xE, 2, 10);
// round 9
GSPREC(0, 4, 0x8, 0xC, 6, 15);
GSPREC(1, 5, 0x9, 0xD, 14, 9);
GSPREC(2, 6, 0xA, 0xE, 11, 3);
GSPREC(3, 7, 0xB, 0xF, 0, 8);
GSPREC(0, 5, 0xA, 0xF, 12, 2);
GSPREC(1, 6, 0xB, 0xC, 13, 7);
GSPREC(2, 7, 0x8, 0xD, 1, 4);
GSPREC(3, 4, 0x9, 0xE, 10, 5);
// round 10
GSPREC(0, 4, 0x8, 0xC, 10, 2);
GSPREC(1, 5, 0x9, 0xD, 8, 4);
GSPREC(2, 6, 0xA, 0xE, 7, 6);
GSPREC(3, 7, 0xB, 0xF, 1, 5);
GSPREC(0, 5, 0xA, 0xF, 15,11);
GSPREC(1, 6, 0xB, 0xC, 9, 14);
GSPREC(2, 7, 0x8, 0xD, 3, 12);
GSPREC(3, 4, 0x9, 0xE, 13, 0);
// round 11
GSPREC(0, 4, 0x8, 0xC, 0, 1);
GSPREC(1, 5, 0x9, 0xD, 2, 3);
GSPREC(2, 6, 0xA, 0xE, 4, 5);
GSPREC(3, 7, 0xB, 0xF, 6, 7);
GSPREC(0, 5, 0xA, 0xF, 8, 9);
GSPREC(1, 6, 0xB, 0xC, 10,11);
GSPREC(2, 7, 0x8, 0xD, 12,13);
GSPREC(3, 4, 0x9, 0xE, 14,15);
// round 12
GSPREC(0, 4, 0x8, 0xC, 14,10);
GSPREC(1, 5, 0x9, 0xD, 4, 8);
GSPREC(2, 6, 0xA, 0xE, 9, 15);
GSPREC(3, 7, 0xB, 0xF, 13, 6);
GSPREC(0, 5, 0xA, 0xF, 1, 12);
GSPREC(1, 6, 0xB, 0xC, 0, 2);
GSPREC(2, 7, 0x8, 0xD, 11, 7);
GSPREC(3, 4, 0x9, 0xE, 5, 3);
// round 13
GSPREC(0, 4, 0x8, 0xC, 11, 8);
GSPREC(1, 5, 0x9, 0xD, 12, 0);
GSPREC(2, 6, 0xA, 0xE, 5, 2);
GSPREC(3, 7, 0xB, 0xF, 15,13);
GSPREC(0, 5, 0xA, 0xF, 10,14);
GSPREC(1, 6, 0xB, 0xC, 3, 6);
GSPREC(2, 7, 0x8, 0xD, 7, 1);
GSPREC(3, 4, 0x9, 0xE, 9, 4);
// round 14
GSPREC(0, 4, 0x8, 0xC, 7, 9);
GSPREC(1, 5, 0x9, 0xD, 3, 1);
GSPREC(2, 6, 0xA, 0xE, 13,12);
GSPREC(3, 7, 0xB, 0xF, 11,14);
GSPREC(0, 5, 0xA, 0xF, 2, 6);
GSPREC(1, 6, 0xB, 0xC, 5, 10);
GSPREC(2, 7, 0x8, 0xD, 4, 0);
//GSPREC(3, 4, 0x9, 0xE, 15, 8);
v[3] += (m[15] ^ c_u256[8]) + v[4];
v[14] = __byte_perm(v[14] ^ v[3], 0, 0x1032);
v[9] += v[14]; \
v[4] = SPH_ROTR32(v[4] ^ v[9], 12);
v[3] += (m[8] ^ c_u256[15]) + v[4];
v[14] = __byte_perm(v[14] ^ v[3], 0, 0x0321);
// only compute h6 & 7
h[6] ^= v[6] ^ v[14];
h[7] ^= v[7] ^ v[15];
}
/* ############################################################################################################################### */
__global__
void blake256_gpu_hash_nonce(const uint32_t threads, const uint32_t startNonce, uint32_t *resNonce, const uint64_t highTarget)
{
uint32_t thread = (blockDim.x * blockIdx.x + threadIdx.x);
if (thread < threads)
{
const uint32_t nonce = startNonce + thread;
uint32_t h[8];
#pragma unroll
for(int i=0; i < 8; i++) {
h[i] = d_data[i];
}
// ------ Close: Last 52/64 bytes ------
blake256_compress_14(h, nonce, (180U*8U));
if (h[7] == 0 && cuda_swab32(h[6]) <= highTarget) {
#if NBN == 2
if (resNonce[0] != UINT32_MAX)
resNonce[1] = nonce;
else
resNonce[0] = nonce;
#else
resNonce[0] = nonce;
#endif
}
}
}
__host__
static uint32_t decred_cpu_hash_nonce(const int thr_id, const uint32_t threads, const uint32_t startNonce, const uint64_t highTarget)
{
uint32_t result = UINT32_MAX;
dim3 grid((threads + TPB-1)/TPB);
dim3 block(TPB);
/* Check error on Ctrl+C or kill to prevent segfaults on exit */
if (cudaMemset(d_resNonce[thr_id], 0xff, NBN*sizeof(uint32_t)) != cudaSuccess)
return result;
blake256_gpu_hash_nonce <<<grid, block>>> (threads, startNonce, d_resNonce[thr_id], highTarget);
cudaThreadSynchronize();
if (cudaSuccess == cudaMemcpy(h_resNonce[thr_id], d_resNonce[thr_id], NBN*sizeof(uint32_t), cudaMemcpyDeviceToHost)) {
result = h_resNonce[thr_id][0];
#if NBN > 1
for (int n=0; n < (NBN-1); n++)
extra_results[n] = h_resNonce[thr_id][n+1];
#endif
}
return result;
}
__host__
static void decred_midstate_128(uint32_t *output, const uint32_t *input)
{
sph_blake256_context ctx;
sph_blake256_set_rounds(14);
sph_blake256_init(&ctx);
sph_blake256(&ctx, input, 128);
memcpy(output, (void*)ctx.H, 32);
}
__host__
void decred_cpu_setBlock_52(uint32_t *penddata, const uint32_t *midstate, const uint32_t *ptarget)
{
uint32_t _ALIGN(64) data[24];
memcpy(data, midstate, 32);
// pre swab32
for (int i=0; i<13; i++)
data[8+i] = swab32(penddata[i]);
data[21] = 0x80000001;
data[22] = 0;
data[23] = 0x000005a0;
CUDA_SAFE_CALL(cudaMemcpyToSymbol(d_data, data, 32 + 64, 0, cudaMemcpyHostToDevice));
}
/* ############################################################################################################################### */
static bool init[MAX_GPUS] = { 0 };
// nonce position is different in decred
#define DCR_NONCE_OFT32 35
extern "C" int scanhash_decred(int thr_id, struct work* work, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t _ALIGN(64) endiandata[48];
uint32_t _ALIGN(64) midstate[8];
uint32_t *pdata = work->data;
uint32_t *ptarget = work->target;
uint32_t *pnonce = &pdata[DCR_NONCE_OFT32];
const uint32_t first_nonce = *pnonce;
uint64_t targetHigh = ((uint64_t*)ptarget)[3];
int dev_id = device_map[thr_id];
int intensity = (device_sm[dev_id] > 500 && !is_windows()) ? 29 : 25;
if (device_sm[dev_id] < 350) intensity = 22;
uint32_t throughput = cuda_default_throughput(thr_id, 1U << intensity);
if (init[thr_id]) throughput = min(throughput, max_nonce - first_nonce);
int rc = 0;
if (opt_benchmark) {
targetHigh = 0x1ULL << 32;
ptarget[6] = swab32(0xff);
}
if (!init[thr_id])
{
cudaSetDevice(dev_id);
if (opt_cudaschedule == -1 && gpu_threads == 1) {
cudaDeviceReset();
// reduce cpu usage (linux)
cudaSetDeviceFlags(cudaDeviceScheduleBlockingSync);
cudaDeviceSetCacheConfig(cudaFuncCachePreferL1);
CUDA_LOG_ERROR();
}
CUDA_CALL_OR_RET_X(cudaMalloc(&d_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
CUDA_CALL_OR_RET_X(cudaMallocHost(&h_resNonce[thr_id], NBN * sizeof(uint32_t)), -1);
init[thr_id] = true;
}
memcpy(endiandata, pdata, 180);
decred_midstate_128(midstate, endiandata);
decred_cpu_setBlock_52(&pdata[32], midstate, ptarget);
do {
// GPU HASH
uint32_t foundNonce = decred_cpu_hash_nonce(thr_id, throughput, (*pnonce), targetHigh);
if (foundNonce != UINT32_MAX)
{
uint32_t vhashcpu[8];
uint32_t Htarg = ptarget[6];
be32enc(&endiandata[DCR_NONCE_OFT32], foundNonce);
decred_hash(vhashcpu, endiandata);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget))
{
rc = 1;
work_set_target_ratio(work, vhashcpu);
*hashes_done = (*pnonce) - first_nonce + throughput;
work->nonces[0] = swab32(foundNonce);
#if NBN > 1
if (extra_results[0] != UINT32_MAX) {
be32enc(&endiandata[DCR_NONCE_OFT32], extra_results[0]);
decred_hash(vhashcpu, endiandata);
if (vhashcpu[6] <= Htarg && fulltest(vhashcpu, ptarget)) {
work->nonces[1] = swab32(extra_results[0]);
if (bn_hash_target_ratio(vhashcpu, ptarget) > work->shareratio) {
work_set_target_ratio(work, vhashcpu);
xchg(work->nonces[1], work->nonces[0]);
}
rc = 2;
}
extra_results[0] = UINT32_MAX;
}
#endif
*pnonce = work->nonces[0];
return rc;
}
else if (opt_debug) {
applog_hash(ptarget);
applog_compare_hash(vhashcpu, ptarget);
gpulog(LOG_WARNING, thr_id, "result for %08x does not validate on CPU!", foundNonce);
}
}
*pnonce += throughput;
} while (!work_restart[thr_id].restart && max_nonce > (uint64_t)throughput + (*pnonce));
*hashes_done = (*pnonce) - first_nonce;
return rc;
}
// cleanup
extern "C" void free_decred(int thr_id)
{
if (!init[thr_id])
return;
cudaDeviceSynchronize();
cudaFreeHost(h_resNonce[thr_id]);
cudaFree(d_resNonce[thr_id]);
init[thr_id] = false;
cudaDeviceSynchronize();
}